Metastabilization of Tetragonal Zirconia by Doping with Low Amounts of Silica

Article Preview

Abstract:

Nanocrystalline tetragonal zirconia was obtained from ZrOCl2 via the modified forced hydrolysis method combined with aging of the hydrous amorphous precipitate in the mother liquor at 100 °C for 48 h (pH = 9.3). The role of the precipitation and aging temperatures in the metastabilization of the tetragonal ZrO2 polymorph is discussed in terms of the structural and textural data of the resultant oxide. The influence of low concentrations of silica (0.01 – 0.35 wt. % Si), spontaneously leached from the glass vessel or intentionally introduced to the parent solution, was shown to be a vital factor, controlling the phase composition of the final prepared zirconia. Using the concepts of zirconium aquatic chemistry, this effect was explained by incorporation of silicates into hydrous zirconia protostructures.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 128)

Pages:

89-96

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Yamaguchi: Catal. Today Vol. 20 (1994) 199.

Google Scholar

[2] P.D.L. Mercera, J.G. van Ommen, E.B.M. Doesburg, A.J. Burggraaf, J.R.H. Ross: Appl. Catal. Vol. 57 (1990), p.127.

DOI: 10.1016/s0166-9834(00)80728-9

Google Scholar

[3] S. Sōmiya, N. Yamamoto, H. Yanagina (Eds. ), Advances in Ceramics, Vols. 24A and 24B, Science and Technology of Zirconia III, American Ceramic Society, Westerville, OH, (1988).

Google Scholar

[4] R.C. Garvie, R.H. Hannink, R.T. Pascoe: Nature Vol. 258 (1975), p.703.

Google Scholar

[5] P.D.L. Mercera, J.G. van Ommen, E.B.M. Doesburg, A.J. Burggraaf, J.R.H. Ross: Appl. Catal. Vol. 71 (1991), p.363.

Google Scholar

[6] R. Ruh, T.J. Rockett: J. Am. Ceram. Soc. Vol. 53 (1970), p.360.

Google Scholar

[7] G.K. Chuah, S.H. Liu, S. Jaenicke, J. Li: Microp. Mesop. Mater. Vol. 39 (2000) p.381.

Google Scholar

[8] E. Tani, M. Yoshimura, S. Sōmiya: J. Am. Ceram. Soc. Vol. 66 (1983), p.11.

Google Scholar

[9] J. Livage, K. Doi, C. Mazières: J. Am. Ceram. Soc. Vol. 51 (1968) p.349.

Google Scholar

[10] C.J. Norman, P.A. Goulding, I. McAlpine: Catal. Today Vol. 20 (1994), p.313.

Google Scholar

[11] R.C. Garvie: J. Phys. Chem. Vol. 69 (1965) p.1238.

Google Scholar

[12] R.C. Garvie: J. Phys. Chem., Vol. 82 (1978) p.218.

Google Scholar

[13] K.S. Mazdiyasni, C.T. Lynch, J.S. Smith: J. Am. Ceram. Soc. 48 (1965), Vol. 372.

Google Scholar

[14] J.E. Bailey, D. Lewis, Z.M. Librant, L.J. Porter: Trans. J. Br. Ceram. Soc. Vol. 71 (1972), p.25.

Google Scholar

[15] R.C. Garvie, M.F. Goss: J. Mater. Sci. Vol. 21 (1986) p.1253.

Google Scholar

[16] W. Stichert, F. Schüth: Chem. Mater. Vol. 10 (1998) p. (2020).

Google Scholar

[17] P. Jakubus P, A. Adamski, M. Kurzawa, Z. Sojka: J Therm. Anal. Calorim. Vol. 72 (2003) p.299.

Google Scholar

[18] R.D. Shannon: Acta Cryst. A Vol. 32 (1976) p.751.

Google Scholar

[19] Ping Li, I. -W. Chen, J.E. Penner-Hahn: J. Am. Ceram. Soc. Vol. 77 (1994) p.118.

Google Scholar

[20] Ping Li, I. -W. Cheng: J. Am. Ceram. Soc., Vol. 77 (1994) p.1281.

Google Scholar

[21] P. Salas, J. Montoya, V.M. Castaño, R. Rodriquez: Mat. Res. Innovat. Vol. 3 (2000) p.205.

Google Scholar

[22] M. Toba, F. Mizukami, S. -I. Niwa, T. Sano, K. Maeda, A. Annila, V. Komppa: J. Mol. Catal. Vol. 94 (1994) p.85.

DOI: 10.1016/0304-5102(94)87031-4

Google Scholar

[23] F. del Monte, W. Larsen, J.D. Mackenzie: J. Am. Ceram. Soc. Vol. 83 (2000) p.628.

Google Scholar

[24] F. del Monte, W. Larsen, J.D. Mackenzie: J. Am. Ceram. Soc. Vol. 83 (2000) p.1506.

Google Scholar

[25] A. Adamski, P. Jakubus, Z. Sojka: Nukleonika, Vol. 51, Suppl. 1 (2006) p. S27.

Google Scholar

[26] I. Kasatkin, F. Girgsdies, T. Ressler, R.A. Caruso, J.H. Schattka, J. Urban, K. Weiss: J. Mater. Sci. Vol. 39 (2004) 2151.

Google Scholar

[27] L.N. Komissarova, Yu.P. Simanov, Z.A. Vladimirova: Rus. J. Inorg. Chem. Vol. 5 (1960) p.687.

Google Scholar

[28] J. Málek, T. Mitsuhashi, J. Ramírez-Castellanos, Y. Matsui: J. Mater. Res. Vol. 14 (1999) p.1834.

Google Scholar

[29] T. Chraska, A.H. King, Ch.C. Berndt: Mater. Sci. Eng. A Vol. 286 (2000) p.169.

Google Scholar

[30] A. Christensen, E.A. Carter: Phys. Rev. B Vol. 58 (1998) p.8050.

Google Scholar

[31] Z. Sojka, P. Jakubus, A. Adamski, A. Kotarba: Key Eng. Mater. Vol. 153 (2003) p.129.

Google Scholar

[32] X. Gao, J.L.G. Fierro, I. Wachs : Langmuir Vol. 15 (1999) p.3169.

Google Scholar

[33] Z. Zhan, H.C. Zeng: J. Non-Cryst. Solids Vol. 243 (1999) p.26.

Google Scholar

[34] D.H. Kuo, C.H. Chien: Thin Solid Films, Vol. 429 (2003) p.40.

Google Scholar