The Influence of Aluminium Addition on the Microstructure of Zinc Pack Coatings

Article Preview

Abstract:

This work aims to investigate the feasibility of Zn-Al deposition on low alloy steels at temperatures from 400 up to 440oC by pack cementation process aiming to increase their corrosion resistance. A series of experiments were undertaken to investigate the effects of pack powder composition and the deposition temperature of the process. It was observed that the parameters of zinc content and temperature affect only the coating deposition speed, but not the phase composition of the as produced coating. Al forms an overlying layer that seals the zinc coating. In any case, the deposition of successive layers of Zn and Al is feasible with pack cementation. The corrosion performance of Zn-Al coatings formed with alternative methods is already studied and proved to be resistant in harsh environments. So the herein studied coatings are expected to be corrosion resistant. Furthermore as Al is much more resistive than Zn, these coatings are more effective than pure Zn ones.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 130)

Pages:

193-198

Citation:

Online since:

December 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.R. Marder: Prog. Mater. Sci., Vol. 191 (2000), p.191.

Google Scholar

[2] K.L. Choy: Prog. Mater. Sci., Vol 48 (2003), pp.57-170.

Google Scholar

[3] ASM Handbook, Hot Dip Coatings, Vol. 13-Corrosion (ASM, New York 1999).

Google Scholar

[4] M.A. Baker,W. Gissler, S. Klose, M. Trampert, F. Weber: Surf. Coat. Tech., Vol. 125 (2000), pp.207-211.

Google Scholar

[5] Li Y. : Corrosion Science, Vol. 43 (2001), pp.1793-1800 10µm 20µm 50µm 50µm a b c d γ-phase δ-phase γ-phase substrate substrate substrate substrate.

Google Scholar

[6] Kuroda S., Takemoto M.: 1st International Thermal Spray Conference; Canada 8-11-May 2000, pp.1017-1024.

Google Scholar

[7] G. Vourlias, N. Pistofidis, D. Chaliampalias, P. Patsalas, G. Stergioudis and D. Tsipas: Surf. Coat. Tech., Vol. 200 (2006), p.6594.

DOI: 10.1016/j.surfcoat.2005.11.039

Google Scholar

[8] G. Vourlias, N. Pistofidis, D. Chaliampalias, E. Pavlidou, G. Stergioudis, E.K. Polychroniadis and D. Tsipas: J. All. Comp., Vol. 416 (2006), p.125.

DOI: 10.1016/j.jallcom.2005.08.037

Google Scholar

[9] N. Pistofidis, G. Vourlias, D. Chaliampalias, K. Chrysafis, G. Stergioudis, E.K. Polychroniadis: J. All. Comp., Vol. 407 (2006), p.221.

DOI: 10.1016/j.jallcom.2005.06.039

Google Scholar

[10] N. Pistofidis, G. Vourlias, D. Chaliampalias, E. Pavlidou, K. Chrissafis, G. Stergioudis, E.K. Polychroniadis and D. Tsipas: J. Ther. Anal. Calor., Vol. 84 (2006), p.191.

DOI: 10.1007/s10973-005-7196-4

Google Scholar

[11] G. Vourlias, N. Pistofidis, G. Stergioudis, D. Tsipas: Cryst. Res. Technol., Vol. 39 (2004), p.23.

Google Scholar

[12] G. Vourlias, N. Pistofidis, E. Pavlidou, G. Stergioudis, D. Tsipas: Phys. Status Solidi A, Vol. 201 (2004), p.1518.

DOI: 10.1002/pssa.200306799

Google Scholar

[13] J. R. Davis: Metals Handbook Desk Edition, edited by ASM International, (1998).

Google Scholar

[14] PCPDFWIN, Version 2. 02, JCPDS-ICDD, (1999).

Google Scholar