A Comparative Study of the Structure and Properties of Zinc Coatings Deposited with Various Methods

Article Preview

Abstract:

One of the most effective methods for the protection of ferrous substrates from corrosion is zinc hot-dip galvanizing. Although this method has many advantages, it is characterized by a very negative effect on the environment. In the present work Zn coatings were formed with thermal spraying, pack cementation and fluidized bed reactor, which are friendlier to the environment. Their microstructure was characterized with X-ray diffraction and scanning electron microscopy, while their corrosion performance was estimated with exposure in a salt spray chamber. From this investigation it was deduced that CVD coatings are composed by two layers referring to Γ-Fe11Zn40 and δ-FeZn10 phase of the Fe-Zn phase diagram. By contrast the thermal coatings are very porous and composed by pure Zn. However, the corrosion performance of all coatings is similar. This conclusion is very important because it verifies that hot-dip galvanizing could be replaced by the other coating methods.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 130)

Pages:

207-212

Citation:

Online since:

December 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.R. Marder: Prog. in Mat. Sci., Vol. 191 (2000), p.191.

Google Scholar

[2] ASM Handbook, Hot Dip Coatings, Vol. 13-Corrosion (ASM, New York 1999).

Google Scholar

[3] P. Maass, P. Peissker, Handbuch Feuerverzinken (Wiley-VCH, 1993).

Google Scholar

[4] ASM Handbook, Thermal Spraying, Vol. 13-Corrosion (ASM, New York 1999).

Google Scholar

[5] N. Pistofidis, G. Vourlias, E. Pavlidou, P. Patsalas, G. Stergioudis and E.K. Polychroniadis: Surf. Coat. Tech., Vol. 200 (2006), p.6245.

DOI: 10.1016/j.surfcoat.2005.11.085

Google Scholar

[6] G. Vourlias, N. Pistofidis, G. Stergioudis and E.K. Polychroniadis: J. All. Comp., Vol. 416 (2006), p.183.

Google Scholar

[7] G. Vourlias, N. Pistofidis, D. Chaliampalias, P. Patsalas, G. Stergioudis and D. Tsipas: Surf. Coat. Tech., Vol. 200 (2006), p.6594. a b c 40 µm 40 µm 40 µm.

DOI: 10.1016/j.surfcoat.2005.11.039

Google Scholar

[8] G. Vourlias, N. Pistofidis, D. Chaliampalias, E. Pavlidou, G. Stergioudis, E.K. Polychroniadis and D. Tsipas: J. All. Comp., Vol. 416 (2006), p.125.

DOI: 10.1016/j.jallcom.2005.08.037

Google Scholar

[9] D. Chaliampalias, G. Vourlias, N. Pistofidis, E. Pavlidou, A. Stergiou, G. Stergioudis, E.K. Polychroniadis, D. Tsipas: Mat. Lett., in press (2006), doi: 10. 1016/j. matlet. 2006. 04. 036.

DOI: 10.1016/j.matlet.2006.04.036

Google Scholar

[10] N. Pistofidis, G. Vourlias, D. Chaliambalias, K. Chrysafis, G. Stergioudis, E.K. Polychroniadis: J. All. Comp., Vol. 407 (2006), p.221.

Google Scholar

[11] N. Pistofidis, G. Vourlias, D. Chaliampalias, E. Pavlidou, K. Chrissafis, G. Stergioudis, E.K. Polychroniadis and D. Tsipas: J. Ther. Anal. Calor., Vol. 84 (2006), p.191.

DOI: 10.1007/s10973-005-7196-4

Google Scholar

[12] N. Pistofidis, G. Vourlias, D. Chaliampalias, E. Pavlidou, G. Stergioudis, E.K. Polychroniadis: Surf. Inter. Anal., Vol. 38 (2006), p.252.

DOI: 10.1002/sia.2149

Google Scholar

[13] G. Vourlias, N. Pistofidis, G. Stergioudis, D. Tsipas: Cryst. Res. Technol., Vol. 39 (2004), p.23.

Google Scholar

[14] G. Vourlias, N. Pistofidis, E. Pavlidou, G. Stergioudis, D. Tsipas: Phys. Status Solidi A, Vol. 201 (2004), p.1518.

DOI: 10.1002/pssa.200306799

Google Scholar

[15] G. Vourlias, N. Pistofidis, G. Stergioudis, E.K. Polychroniadis: Surf. Inter. Anal., Vol. 38 (2006), p.150.

DOI: 10.1002/sia.2236

Google Scholar

[16] PC Powder Diffraction Files for Windows, Version 2. 02, JCPDS-The International Centre for Diffraction Data (ICDD), (1999).

Google Scholar