Solid-State Transformations in Metal Iodides

Article Preview

Abstract:

Numerous solid-state transformations occur in metal iodides. These transformations can be classified into three categories: polymorphic transformations, polytypic transitions and molecular solids. Many of the modifications of metal iodides involve metastable phases transforming into stable phases. Revisions to the In-I and Th-I phase diagrams are made based on data found in the literature.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 138)

Pages:

29-42

Citation:

Online since:

March 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.F. Rolsten: Iodide Metals and Metal Iodides (John Wiley & Sons, New York 1961).

Google Scholar

[2] L.F. Drudig and J.D. Corbett: J. Amer. Chem. Soc. Vol. 83 (1961), p.2462.

Google Scholar

[3] E. Birk and W. Biltz: Z. Anorg. Allg. Chem. Vol. 128 (1923), p.45.

Google Scholar

[4] F.L. Oetting and N.W. Gregory: J. Phys. Chem. Vol. 65 (1961), p.173.

Google Scholar

[5] D.A. Brown: Halides of the Lanthanides and Actinides (Wiley-Interscience, London 1968).

Google Scholar

[6] J.H. Canterford and R. Colton: Halides of the Second and Third Row Transition Metals (Wiley-Interscience, London 1968).

Google Scholar

[7] J.H. Canterford and R. Colton: Halides of the First Row Transition Metals (Wiley- Interscience, London 1969).

Google Scholar

[8] S. Anderson and R.B. Page: J. Light Visual Environment Vol. 5 (1981), p.1.

Google Scholar

[9] T.R. Brumleve: Anal. Chim. Acta Vol. 155 (1983), p.79.

Google Scholar

[10] G. Meyer and L.R. Morss: Synthesis of Lanthanide and Actinide Compounds (Kluwer Academic Publishers, Dordrecht, The Netherlands 1991).

Google Scholar

[11] D.F. Shriver and M.A. Drezdzon: The Manipulation of Air-Sensitive Compounds, 2nd Edition (John Wiley & Sons, New York 1986).

Google Scholar

[12] D. Schultze: Differentialthermoanalyse (VEB Deutscher Verlag der Wissenschaften, Berlin 1969).

Google Scholar

[13] NETZSCH Gerätebau GmbH, DSC/DTA Correction Software and Peak Separation Software (Selb, Germany 2006).

Google Scholar

[14] W.F. Hemminger and H.K. Cammenga: Methoden der Thermischen Analyse (Springer-Verlag, Berlin 1989).

Google Scholar

[15] W.J. Boettinger, U.R. Kattner, K. -W. Moon and J.H. Perepezko: DTA and Heat-flux DSC Measurements of Alloy Melting and Freezing NIST Recommended Practice Guide, Special Publication 960-15 (2006).

DOI: 10.6028/nbs.sp.960-15

Google Scholar

[16] J.E. Mee and J.D. Corbett: Inorg. Chem. Vol. 4 (1965), p.88.

Google Scholar

[17] C. Guminski: J. Phase Equilib. Vol. 18 (1997), p.206.

Google Scholar

[18] M. Hostettler, H. Birkedal and D. Schwarzenbach: Chimia Vol. 55 (2001), p.541.

Google Scholar

[19] M. Hostettler, H. Birkedal and D. Schwarzenbach: Acta Crystallogr. B Vol. 58 (2002), p.903.

Google Scholar

[20] J.B. Newkirk: Acta Metall. Vol. 4 (1956), p.316.

Google Scholar

[21] M. Hostettler, H. Birkedal and D. Schwarzenbach: Helv. Chim. Acta Vol. 86 (2003), p.1410.

Google Scholar

[22] M. Hostettler and D. Schwarzenbach: Comptes Rendus Chimie Vol. 8 (2005), p.147.

Google Scholar

[23] A. Weiss and A. Weiss: Z. Naturforsch. Vol. 11b (1956), p.604.

Google Scholar

[24] H. Jagodzinski: Z. Kristallogr. Vol. 112 (1959), p.80.

Google Scholar

[25] P. Krawczyk, A. Hammerl and P. Schwerdtfeger: Chem. Phys. Chem. Vol. 7 (2006), p.2286.

Google Scholar

[26] T. Söhnel, H. Hermann and P. Schwerdtfeger: Angew. Chem. -Int. Edit. Vol. 40 (2001), p.4381.

Google Scholar

[27] P. Pyykkö: Inorg. Chim. Acta Vol. 358 (2005), p.4113.

Google Scholar

[28] T. Söhnel, H. Hermann and P. Schwerdtfeger: J. Phys. Chem. B Vol. 109 (2005), p.526.

Google Scholar

[29] M.H. Grange: Bulletin de la Societe Chimique de France (1964), p.2418.

Google Scholar

[30] E.M.W. Janssen: J. Less-Common Met. Vol. 59 (1978), p.65.

Google Scholar

[31] M.J.S. Gynane and I.J. Worral: Inorg. Nucl. Chem. Let. Vol. 9 (1973), p.903.

Google Scholar

[32] R. Kniep and P. Blees: Angew. Chem. -Int. Edit. Vol. 23, (1984), p.799.

Google Scholar

[33] K. Ishikawa and K. Fukushi: J. Chem. Soc. Faraday Trans. I Vol. 76 (1980), p.291.

Google Scholar

[34] T.N. Guliev: Izv. Vys. Uch. Zavedenii, Khimii i Khim. Tekhnologiya Vol. 34 (1991), p.7.

Google Scholar

[35] E.A. Peretti: J. Amer. Chem. Soc. Vol. 78 (1956), p.5745.

Google Scholar

[36] D.E. Scaife and A.W. Wylie: J. Chem. Soc. (1964), p.5450.

Google Scholar

[37] E. Hayek and Th. Rehner: Experientia Vol. 5 (1949), p.114.

Google Scholar

[38] O. Knacke E. Münstermann and H. Probst: Ber. Bunsen-Gesell. Vol. 82 (1978), p.154.

Google Scholar

[39] R.J. Clark and J.D. Corbett: Inorg. Chem. Vol. 2 (1963), p.460.

Google Scholar

[40] J.S. Anderson and R.W.M. D'Eye: J. Chem. Soc. (1949), (Supplement Issue No. 2) S244.

Google Scholar

[41] H.P. Beck and C. Strobel: Angew. Chem. -Int. Edit. Vol. 21 (1982), p.525.

Google Scholar

[42] L.J. Guggenberger and R.A. Jacobson: Inorg. Chem. Vol. 7 (1968), p.2257.

Google Scholar

[43] G.W. Watt, D.M. Sowards and S.C. Malhotra: J. Amer. Chem. Soc. Vol. 79 (1957), p.4908.

Google Scholar

[44] M. Daviti, K. Chrissafis, K.M. Paraskevopoulos, E.K. Polychroniadis and T. Spassov: J. Therm. Anal. Calor. Vol. 70 (2002), p.605.

DOI: 10.1023/a:1021653313830

Google Scholar

[45] G.A. Jeffrey and M. Vlasse: Inorg. Chem. Vol. 6 (1967), p.396.

Google Scholar

[46] R.G. Barnes, S.L. Segel, P.J. Bray and P.A. Casabella: J. Chem. Phys. Vol. 26 (1957), p.1345.

Google Scholar

[47] G.A. Berezovsky, I.E. Paukov, K.S. Sukhovey and T.P. Chuova: J. Chem. Thermodyn. Vol. 23 (1991), p.503.

Google Scholar

[48] R. Kniep and P. Blees: Angew. Chem. -Int. Edit. 23 (1984), p.799.

Google Scholar

[49] P.I. Federov and N.S. Malova: Russ. J. Inorg. Chem. Vol. 20 (1975), p.1265.

Google Scholar

[50] F. Ensslin and H. Dreyer: Z. Anorg. Allg. Chemie Vol. 249 (1942), p.119.

Google Scholar

[51] V.A. Titov, T.P. Chusova and Yu.G. Stenin: Z. Anorg. Allg. Chemie Vol. 625 (1999), p.1013.

Google Scholar

[52] P.I. Fedorov, N.S. Malova and V.A. Zhikharev: Russ. J. Inorg. Chem. Vol. 17 (1972), p.286.

Google Scholar

[53] E.A. Secco: Thermochim. Acta Vol. 342 (1999), p.161.

Google Scholar

[54] D. Kobertz and S.C. Hansen: unpublished research.

Google Scholar

[55] V.S. Kostko, O.V. Kostko, G.I. Makovetskii and K.I. Yanushkevich: Phys. Stat. Sol. (b) Vol. 229 (2002), p.1349.

DOI: 10.1002/1521-3951(200202)229:3<1349::aid-pssb1349>3.0.co;2-r

Google Scholar

[56] P.I. Fedorov, G.A. Kot and L.L. Nikol'skaya: Russ. J. Inorg. Chem. Vol. 12 (1967), p.1487.

Google Scholar

[57] J. Galy and R. Enjalbert: J. Solid State Chem. Vol. 44 (1982), p.1.

Google Scholar

[58] S. Pohl and W. Saak: Z. Kristallogr. Vol. 169 (1984), p.177.

Google Scholar

[59] H. -G. von Schnering, H. von Benda and C. Kalveram: Z. Anorg. Allg. Chemie Vol. 438 (1978), p.37.

DOI: 10.1002/zaac.19784380104

Google Scholar

[60] E.V. Dikarev, V.A. Trifonov and B.A. Popovkin: Russ. J. Inorg. Chem. Vol. 32 (1987), p.238.

Google Scholar

[61] B. Predel and D. Rothacker: Thermochim. Acta Vol. 1, (1970), p.477.

Google Scholar

[62] S.J. Yosim, L.D. Ransom, R.A. Sallach and L.E. Topol: J. Phys. Chem. Vol. 66 (1962), p.28.

Google Scholar

[63] J.D. Corbett, D.L. Pollard and J.E. Mee: Inorg. Chem. Vol. 5 (1966), p.761.

Google Scholar

[64] E. Warkentin and H. Bärnignhausen, in: Collected Abstracts, Third European Crystallographic Meeting, Zürich (1976).

Google Scholar

[65] E. Warkentin and H. Bärnighausen: Z. Anorg. Allg. Chemie Vol 459 (1979), p.187.

Google Scholar

[66] G. Meyer and A. Palasyuk, in: Inorganic Chemistry in Focus III, edited by G. Meyer, D. Naumann and L. Wesemann, Wiley-VCH Verlag, Weinheim, Germany (2007).

DOI: 10.1021/ja069826c

Google Scholar

[67] N. Gerlitzki, G. Meyer, A. -V. Mudring, and J.D. Corbett: J. Alloy Compd. Vol. 380 (2004), p.211.

Google Scholar

[68] A.S. Dworkin and M.A. Bredig: High Temp. Sci. Vol. 3 (1971), p.81.

Google Scholar

[69] W.R. Wilmarth, R.G. Haire, J.P. Young, D.W. Ramey and J.R. Peterson: J. Less-Common Met. Vol. 141 (1988), p.275.

Google Scholar

[70] J. Kutscher and A. Schneider: Z. anorg. Allg. Chemie Vol. 386 (1971), p.38.

Google Scholar

[71] A.K. Molodkin and A.G. Dudareva: Russ. J. Inorg. Chem. Vol. 31 (1986), p.1603.

Google Scholar

[72] A.K. Molodkin, A.M. Karagodina, V.S. Tupelov, A.G. Dudareva and A.G. Krokhina: Russ. J. Inorg. Chem. Vol. 29 (1984), p.614.

Google Scholar

[73] I.S. Astakhova and V.F. Goryushkin: Russ. J. Inorg. Chem. Vol. 47 (2002), p.1551.

Google Scholar

[74] X. Li and S. Wang in: New Frontiers in Rare Earth Science and Applications, edited by X. Guangxian and X. Jimei, Vol. 1 of Proceedings of the International Conference on Rare Earth Development and Applications, Academic Press (1985).

DOI: 10.1016/b978-0-12-767661-6.50003-5

Google Scholar

[75] S. Wang, S. Jiang, Z. Tang, H. Yang and X. Li: Huaxue Tongbao Vol. 11 (1981), p.654.

Google Scholar

[76] A.K. Molodkin, V.S. Tupolev, A.M. Karagodina, A.G. Dudareva and A.G. Krokhina: Russ. J. Inorg. Chem. Vol. 28 (1983), p.1688.

Google Scholar

[77] H. Bärnighausen and N. Schultz: Acta Crystallogr. B Vol. 25 (1969), p.1104.

Google Scholar

[78] D.A. Johnson and J.D. Corbett in: Rare Earth Elements, Book 1, Intl. Conf. of the National Center of Scientific Research, CNRS, Paris, France (1970).

Google Scholar

[79] L.B. Asprey and F.H. Kruse: J. Inorg. Nucl. Chem. Vol. 13 (1960), p.32.

Google Scholar

[80] J.K. Howell and L.L. Pytlewski: J. Appl. Crystallogr. Vol. 3 (1970), p.193.

Google Scholar

[81] D. Brown, B. Whittaker and G. de Paoli: U.K. Atomic Energy Research Establishment, Report (AERE-R 8367) (1976).

Google Scholar

[82] J.P. Bros, Y. Fouque, M. Gaune-Escard, W. Szczepaniak and A. Bogaczi: J. de Chimie Physique et de Physico-Chimie Biologique Vol. 79 (1982), p.715.

DOI: 10.1051/jcp/1982790715

Google Scholar

[83] Yu.V. Gagarinskii, L.A. Khripin and S.A. Polishchuk: Atomic Energy Vol. 23 (1967), p.865.

Google Scholar

[84] R.G. Haire, J.P. Young and J.R. Peterson: J. Less-Common Met. Vol. 93 (1983), p.339.

Google Scholar

[85] D.A. Keen and S. Hull: J. Phys. -Conden. Matter Vol. 6 (1994), p.1637.

Google Scholar

[86] D.A. Keen and S. Hull: J. Phys. -Conden. Matter Vol. 7 (1995), p.5793.

Google Scholar

[87] K. Weiss: Z. Physikalische Chemie, Neue Folge Vol. 59 (1968), p.318.

Google Scholar

[88] References in J.B. Boyce, T.M. Hayes and J.C. Mikkelsen: Phys. Rev. B Vol. 23 (1981), p.2876.

Google Scholar

[89] J. Nölting and D. Rein: Z. Physikalische Chemie, Neue Folge Vol. 66 (1969), p.150.

Google Scholar

[90] J.G.P. Binner, G. Dimitrakis, D.M. Price and M. Reading: J. Therm. Anal. Calor. Vol. 84 (2006), p.406.

Google Scholar

[91] R. Shaviv, E.F. Westrum, F. Gronvold, S. Stolen, A. Inaba, H. Fujii and H. Chihara: J. Chem. Thermodyn. Vol. 21 (1989), p.631.

Google Scholar

[92] M. Degner, B. Holle, J. Kamm, M.F. Pilbrow, G. Thiele, D. Wagner, W. Weigl and P. Woditsch: Transit. Metal Chem. Vol. 1 (1975), p.41.

DOI: 10.1007/bf01753081

Google Scholar

[93] K. Brodersen, G. Thiele and B. Holle: Z. Anorg. Allg. Chem. Vol. 369 (1969), p.154.

Google Scholar

[94] G. Thiele, W. Weigl and M. Degner: Naturwiss. Vol. 62 (1975), p.297.

Google Scholar

[95] G. Thiele, W. Weigl and H. Wochner: Z. Anorg. Allg. Chemie, Vol. 539 (1986), p.141.

Google Scholar

[96] G. Thiele, K. Brodersen, E. Kruse and B. Holle: Naturwiss. Vol. 54 (1967), p.615.

Google Scholar

[97] G. Thiele, K. Brodersen, E. Kruse and B. Holle: Chemische Ber. Vol. 101 (1968), p.2771.

DOI: 10.1002/cber.19681010822

Google Scholar

[98] D. Juza, D. Giegling and H. Schäfer: Z. Anorg. Allg. Chemie Vol. 366 (1969), p.121.

Google Scholar

[99] G. Lamprecht and E. Schönherr: J. Crystal Growth Vol. 49 (1980), p.415.

Google Scholar

[100] R.F. Rolsten and H.H. Sisler: J. Amer. Chem. Soc. Vol. 79 (1957), p.5891.

Google Scholar

[101] S.I. Troyanov, G.N. Mazo, M.A. Simonov: Vestnik Moskovskogo Univ., Seriya 2: Khimiya Vol. 25 (1984), p.458.

Google Scholar

[102] E.G. Tornqvist and W.F. Libby: Inorg. Chem. Vol. 18 (1979), p.1792.

Google Scholar

[103] .

Google Scholar

[103] F.D. Stevenson and C.E. Wicks: J. Chem. Eng. Data Vol. 10 (1965), p.33.

Google Scholar

[104] V.I. Tsirel'nikov and M.I. Ioffe: Russ. J. Inorg. Chem. Vol. 11 (1966), p.1283.

Google Scholar

[105] P. Seabaugh and J.D. Corbett: Inorg. Chem. Vol. 4 (1965), p.176.

Google Scholar

[106] E. Th. Rietschel and H. Bärnighausen: Z. Anorg. Allg. Chemie Vol. 368 (1969), p.62.

Google Scholar

[107] G. Lui and H.A. Eick: J. Less-Common Met. Vol. 156 (1989), p.237.

Google Scholar

[108] V.K. Agarwal: Mater. Res. Bull. Vol. 14 (1979), p.907.

Google Scholar

[109] D.P. Varn and G.S. Canright: Acta Crystallogr. A Vol. A57 (2001), p.4.

Google Scholar

[110] R.J.M. Konings, E.H.P. Cordfunke and R.R. van der Laan: J. Alloy Compd. Vol. 230 (1995), p.85.

Google Scholar

[111] E. Salje, B. Palosz and B. Wruck: J. Physics C-Solid State Phys. Vol. 20 (1987), p.4077.

Google Scholar

[112] R.S. Mitchell: Z. Kristallogr. Vol. 111 (1959), p.372.

Google Scholar

[113] T. Minagawa: Acta Crystallogr. A Vol. 31 (1975), p.823.

Google Scholar

[114] R. Prasad and O.N. Srivastava: Acta Crystallogr. B Vol. 30 (1974), p.1748.

Google Scholar

[115] T. Minigawa: J. Appl. Crystallogr. Vol. 11 (1978), p.243.

Google Scholar

[116] H. Schäfer, H. -G. von Schnering, J. Tillack, F. Kuhnen, H. Wöhrle and H. Baumann: Z. Anorg. Allg. Chemie Vol. 353 (1967), p.281.

Google Scholar

[117] D. Bauer, H. -G. Schnering and H. Schäfer: J. Less-Common Metals Vol. 8 (1965), p.388.

Google Scholar

[118] D.H. Guthrie and J.D. Corbett: J. Solid State Chem. Vol. 37 (1981), p.256.

Google Scholar

[119] J.D. Corbett and D.H. Guthrie: Inorg. Chem. Vol. 21 (1982), p.1747.

Google Scholar

[120] D.H. Guthrie and J.D. Corbett: Inorg. Chem. Vol. 21 (1982), p.3290.

Google Scholar

[121] .

Google Scholar

[121] J.D. Franolic, J.R. Long and R.H. Holm: J. Amer. Chem. Soc. Vol. 117 (1995), p.8139.

Google Scholar

[122] H. Schäfer, H. -G. Schulz: Z. Anorg. Allg. Chemie Vol. 516 (1984), p.196.

Google Scholar

[123] R. Kniep, H.J. Beister and D. Wald: Z. Naturforsch. B Vol. 43 (1988), p.966.

Google Scholar

[124] S. Troyanov, T. Krahl and E. Kemnitz: Z. Kristallographie Vol. 219 (2004), p.88.

Google Scholar

[125] R. Kniep, P. Blees and W. Poll: Angew. Chem. -Int. Edit. Vol. 21 (1982), p.386.

Google Scholar

[126] M.A. Khan and D.G. Tuck: Inorg. Chim. Acta Vol. 97 (1985), p.73.

Google Scholar

[127] H.P. Beck, Z. Naturforsch. B, Vol. 39 (1984), p.310.

Google Scholar

[128] J.D. Forrester, A. Zalkin and D.H. Templeton: Inorg. Chem. Vol. 3 (1964), p.63.

Google Scholar

[129] M.J. Bennett, F.A. Cotton and B.M. Foxman: Inorg. Chem. Vol. 7 (1968), p.1563.

Google Scholar

[130] V. Paulat and B. Krebs: Angew. Chem. -Int. Edit. Vol. 15 (1976), p.39.

Google Scholar

[131] D. Bauer and H. Schäfer: J. Less-Common Met. Vol. 14 (1968), p.476.

Google Scholar

[132] H.G. Schulz, R. Siepmann and H. Schäfer: J. Less-Common Met. Vol. 22 (1970), p.136.

Google Scholar