A Short Review of Shape Memory Alloys Thermomechanical Models

Article Preview

Abstract:

At first, some comments are made concerning the capacity of prediction of the microstructure for shape memory alloys by the Crystallographical Theory of Martensite. Secondly, the basic foundations of the phenomenological modeling of shape memory alloys behavior at the macroscopic scale are given. A special attention is devoted to the yield surface of phase transformation initiation in the stress space and its convex dual: the set of effective transformation strains in the strain space.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 138)

Pages:

355-366

Citation:

Online since:

March 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Patoor, D.C. Lagoudas, P.B. Entchev, L.C. Brinson and X. Gao: Mech. Mater. Vol. 38 (2006), p.391.

Google Scholar

[2] D.C. Lagoudas, P.B. Entchev, P. Popov, E. Patoor, L.C. Brinson and X. Gao: Mech. Mater. Vol. 38 (2006), p.430 Stress Space Effective Strain Space.

Google Scholar

[3] M.S. Weschler, D.S. Lieberman and T.A. Read: Trans AIME, Vol. 197 (1953), p.1503.

Google Scholar

[4] J.M. Ball and R.D. James: Arch. Ration. Mech. Anal. Vol. 100 (1987), p.13.

Google Scholar

[5] J.M. Ball and R.D. James: Phil. Trans. Roy. Soc. Lond. A Vol. 338 (1992), p.389.

Google Scholar

[6] K. Bhattacharya: Microstructure of Martensite (Oxford, Oxford University Press 2003).

Google Scholar

[7] K.F. Hane: J. Mech. Phys. Solids Vol. 47 (1999), p. (1917).

Google Scholar

[8] K.F. Hane and T.W. Shield: Acta Mater. Vol. 47 (1999), p.2603.

Google Scholar

[9] B. Raniecki, K. Tanaka and A. Ziolkowski : Mat. Sci. Res. Inter. Vol. 2 (2001), p.327.

Google Scholar

[10] C. Bouvet, S. Calloch and C. Lexcellent: J. Eng. Mater. Technol. Vol. 124 (2002), p.112.

Google Scholar

[11] C. Lexcellent and P. Blanc: Acta Mater. Vol. 52 (2004), p.2317.

Google Scholar

[12] S. Arbab Chirani and E. Patoor, in: Proceedings of the Third Japan-France Seminar on Intelligent Materials and Structures, edited by Y. Nishi and P. Bourgin, (2000).

Google Scholar

[13] A. Sadjadpour and K. Bhattacharya: Smart Materials and Structures (2007), to appear.

Google Scholar

[14] Y. Huo and I. Muller: Continuum Mech. Therm. Vol. 5 (1993), p.163.

Google Scholar

[15] B. Raniecki, C. Lexcellent and K. Tanaka: Arch. Mech. Vol. 44 (1992), p.261.

Google Scholar

[16] B. Vieille, L. Boubakar and C. Lexcellent: J. Theor. Appl. Mech. Vol. 41 (2003), p.675.

Google Scholar

[17] B. Raniecki and C. Lexcellent: Eur. J. Mech. A-Solids Vol. 17 (1998), p.185.

Google Scholar

[18] D.P. Koistinen and R.E. Marburger: Acta Mater. Vol. 7 (1959), p.59.

Google Scholar

[19] L.C. Brinson: J. Intell. Mater. Syst. Struct. Vol. 4 (1993), p.229.

Google Scholar

[20] S. Leclercq and C. Lexcellent: J. Mech. Phys. Solids Vol. 44 (6) (1996), p.953.

Google Scholar

[21] J. Rejzner: PHD Thesis, Modelling of SMA Subjected to Multiaxial Loading or Stress Gradients (Université de Franche-Comté France 2000).

Google Scholar