Formation of NiAl Shape Memory Alloy Thin Films by a Solid-State Reaction

Article Preview

Abstract:

NiAl shape memory alloy thin films have been fabricated by a solid-state reaction in Al/Ni bilayer films. Two kinds of synthesis have been used. The first one consists in heating an Al/Ni bilayer film system to temperatures above 480 K. The second one implies the successive deposition of nickel and aluminum films onto a substrate with a temperature above 480 K. Regardless of a kind of the solid-state synthesis, the films obtained reveal a two-way shape memory effect. It is supposed that the solid-state reaction in Al/Ni bilayers starts at a temperature AS of the reverse of the martensitic transition in NiAl alloy. This indicates that the NiAl shape memory alloy thin films can be formed directly during the synthesis without need for lengthy heat treatment.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 138)

Pages:

377-384

Citation:

Online since:

March 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.G. Wei, R. Sandstrom and S. Miyazaki: J. Mater. Sci. Vol. 33 (1998), p.3743.

Google Scholar

[2] J.W. Judy: Smart Mater. Struct. Vol. 10 (2001), p.1115.

Google Scholar

[3] T.M. Adams, S.R. Kirkpatrick, Z. Wang and A. Siahmakoun: Mater. Lett. Vol. 59 (2005), p.1161.

Google Scholar

[4] T. Lehnert, H. Grimmer, P. Böni, M. Horisberger and R. Gotthardt: Acta Mater. Vol. 48 (2000), p.4065.

Google Scholar

[5] V.V. Kudryavtsev, V.V. Nemoshkalenko, Y.P. Lee, K.W. Kim, C.G. Kim and B. Szymanski: J. Appl. Phys. Vol. 88 (2000), p.2430.

Google Scholar

[6] V.G. Myagkov, L.A. Li, L.E. Bykova, I.A. Turpanov and G.N. Bondarenko: Dokl. Phys. Vol. 47 (2002), p.95.

Google Scholar

[7] P.L. Potapov, N.A. Poliakova and V.A. Udovenko: Scripta Mater. Vol. 35 (1996), p.423.

Google Scholar

[8] H.Y. Kim and S. Miyazaki: Scripta Mater. Vol. 50 (2004), p.237.

Google Scholar

[9] S. Chikazumi: J. Appl. Phys. Vol. 32S (1961), p.81.

Google Scholar

[10] V.G. Miagkov, L.I. Kveglis, G.I. Frolov and V.S. Zhigalov: J. Mater. Sci. Lett. Vol. 13 (1994), p.1284.

Google Scholar

[11] E. Ma, C.V. Thomson, L.A. Clevenger and K.N. Tu: Appl. Phys. Lett. Vol. 57 (1990), p.1262.

Google Scholar

[12] C. Michaelsen, K. Barmak and G. Lucadanno: J. Appl. Phys. Vol. 80 (1996), p.6689.

Google Scholar

[13] U. Rothhaar, H. Oechsner and M. Scheib: R. Muller, Phys. Rev. B. Vol. 61 (2000), p.974.

Google Scholar

[14] H. Sieber, J.S. Park, J. Weissmuller and J.H. Perepezko: Acta Mater. Vol. 49 (2001), p.1139.

Google Scholar

[15] K.J. Blobaum, D. van Heerden, A.J. Gavens and T. P. Weihs: Acta Mater. Vol. 51 (2003), p.3871.

Google Scholar

[16] A.J. Gavens, D. Van Heerden, A.B. Mann, M.E. Reis and T.P. Weihs: J. Appl. Phys. Vol. 87 (2000), p.1255.

Google Scholar

[17] K. Barmak, C. Michaelsen and G. Lucadanno: J. Mater. Res. Vol. 12 (1997), p.133.

Google Scholar

[18] H. Sieber and J.H. Perepezko: J. Mater. Sci. Lett. Vol. 18 (1999), p.1449.

Google Scholar

[19] A. Taylor and N.J. Doyle: J. Appl. Crystallogr. Vol. 5 (1972), p.201.

Google Scholar

[20] P.L. Potapov, S.Y. Song, V.A. Udovenko, and S.D. Prokoshkin: Metall. Trans. A Vol. 28 (1997), p.1133.

Google Scholar

[21] P.L. Potapov, P. Ochin, J. Pons and D. Schryvers: Acta Mater. Vol. 48 (2000), p.3833.

Google Scholar

[22] D. Alman: J. Mater. Sci. Lett. Vol. 13 (1994), p.483.

Google Scholar