Texture/Stress Characteristics of Microstructure Used in Interpreting Deformation Effects of Ti Subjected to ECAP Process

Article Preview

Abstract:

The common feature of the technologies, such as the equal channel angular pressing (ECAP) is the use of a changeable deformation path, which changes the configuration (value and direction) of the acting forces that impose various directions of plastic flow. The changes destabilize a temporary dislocation structure as well as the spatial distribution of the areas with elevated elastic energy cumulated in deformed lattice. The application of that technique results in a potentially large deformation (up to several hundred percent) and plasticity of materials considered to be brittle at ambient temperature. The microstructure effects accompanied with intensive and large deformation are reflected in the space orientation of grains (crystallographic texture) as well as in the configuration of the residual stresses existing in deformed material. The presented results based on experimental data registered by X-ray diffraction and TEM techniques are helpful in interpreting deformation mechanisms operating in the bend-zone of the ECAP tool during processing Ti-ingot by the mentioned method of severe plastic deformation.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 160)

Pages:

103-108

Citation:

Online since:

February 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Pospiech, J. Blicharski, M. Wróbel and J. Bonarski: Mater. Sci. Forum Vol. 408 -412 (2002), p.613.

DOI: 10.4028/www.scientific.net/msf.408-412.613

Google Scholar

[2] R. Valiev, R. Islamgaliev and I.V. Alexandrov: Progr. Mater. Sci. Vol. 45 (2000), p.103.

Google Scholar

[3] M.J. Zehetbauer, H.P. Stüwe, A. Vorhauer, E. Schafler and J. Kohout: Adv. Eng. Mater. Vol. 5 (2003), p.330.

DOI: 10.1002/adem.200310090

Google Scholar

[4] A. Korbel and W. Bochniak: J. Mater. Proc. Technol. Vol. 53 (1995), p.229.

Google Scholar

[5] X. Huang, A. Borrego and W. Pantleon: Mater. Sci. Eng. A 319-321 (2001), p.237.

Google Scholar

[6] J. Kuśnierz: Mater. Sci. Forum Vol. 426-432 (2003), p.2807.

Google Scholar

[7] I.V. Alexandrov, M.V. Zhilina, A.V. Scherbakov, A.I. Korshunov, P.N. Nizovtsev, A.A. Smolyakov, V.P. Solovyev, I.J. Beyerlein and R.Z. Valiev: Arch. Met. & Mater. Vol. 50, 2 (2004), p.281.

DOI: 10.4028/www.scientific.net/msf.495-497.785

Google Scholar

[8] M.V. Zhilina, J. Bonarski A.V. Scherbakov, I.V. Alexandrov and K. Makarychev: Arch. Met. & Mater. Vol. 50, 2 (2004), p.479.

Google Scholar

[9] J. Bonarski, A.V. Scherbakov and I.V. Alexandrov: in: �anomaterials by Severe Plastic Deformation, edited by M.J. Zehetbauer, R.Z. Valiev, WILEY-VCH Verlag & Co. KGaA, Weinheim (2004), p.309.

Google Scholar

[10] S. Li, I.J. Beyerlein, D.J. Alexander and S.C. Voge: Acta Mater. Vol. 53 (2005), p.2111.

Google Scholar

[11] I.V. Alexandrov, M.V. Zhilina and J.T. Bonarski: Bulletin of the Polish Academy of Sciences Vol. 54 (2006), p.199.

Google Scholar

[12] I. Kim, J. Kim, D.H. Shin, X.Z. Liao and Y.T. Zhu: Scripta Mater. Vol. 48 (2003), p.813.

Google Scholar

[13] I.V. Alexandrov, А.А. Dubravina, A.R. Kilmametov et. al.: Metals and Mat. Int. Vol. 9 (2003), p.151.

Google Scholar

[14] L. Tarkowski, M. Zhilina, J. Bonarski and I. Alexandrov: Arch. Met. & Mater. Vol. 53, 1 (2008), p.243.

Google Scholar

[15] K. Pawlik: Phys. Stat. Solidi (B) Vol. 134 (1986), p.477.

Google Scholar

[16] LaboTex: The Texture Analysis Software, by LaboSoft s. c. (2006).

Google Scholar

[17] K. Sztwiertnia, M. Bieda & G. Sawina: Arch. Met. & Mater. Vol. 51, 1 (2006), p.55.

Google Scholar