Plastic Anisotropy of Ultrafine Grained Al Alloy AA6016 Produced by Accumulative Roll Bonding

Article Preview

Abstract:

In order to quantify the plastic anisotropy of the ultrafine grained aluminium alloy AA6016 produced by accumulative roll-bonding (ARB) the Lankford parameter is measured by tensile testing as a function of the number of ARB cycles. The experimental results are compared with those from texture-based Taylor simulations. Increasing differences between experiment and theory at higher number of ARB cycles may be attributed to highly oriented microstructural features.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 160)

Pages:

171-176

Citation:

Online since:

February 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Skrotzki, I. Hünsche, J. Hüttenrauch, C. -G. Oertel, H.G. Brokmeier, H.W. Höppel and I. Topic: Hindawi Publishing Corporation, Texture, Stress, and Microstructure Vol. 2008, Article ID 328754, 9 pages, doi: 10. 1155/2008/328754.

DOI: 10.1155/2008/328754

Google Scholar

[2] I. Topic, H.W. Höppel and M. Göken: Int. J. Mat. Res. Vol. 98 (2007), p.320.

Google Scholar

[3] M. Dahms: J. Appl. Cryst. Vol. 22 (1989), p.439.

Google Scholar

[4] M. Dahms, T. Eschner, in: Quantitative Texturanalyse durch iterative Reihenzerlegung von Beugungs-Polfiguren (software manual) (1996).

Google Scholar

[5] H. -J. Bunge: Z. Metallkde Vol. 56 (1965), p.872.

Google Scholar

[6] G.I. Taylor: J. Inst. Met. Vol. 62 (1938), p.307.

Google Scholar

[7] J.F.W. Bishop and R. Hill: Phil. Mag. Vol. 42 (1951), p.414.

Google Scholar

[8] J.F.W. Bishop and R. Hill: Phil. Mag. Vol. 42 (1951), p.1298.

Google Scholar

[9] W.F. Hosford, in: The Mechanics of Crystals and Textured Polycrystals, Oxford University Press (1993).

Google Scholar

[10] P. Van Houtte: Textures Microstruct. Vol. 8-9 (1988), p.313.

Google Scholar

[11] M. Heilmaier, M. Nganbe, B. Beckers, H. -G. Brokmeier, R. Tamm, C. -G. Oertel and W. Skrotzki: Mater. Sci. Eng. A Vol. 319-321 (2001), p.290.

DOI: 10.1016/s0921-5093(01)00951-0

Google Scholar

[12] H.J. Bunge: Kristall und Tech. Vol. 5 (1970), p.145.

Google Scholar

[13] P. Van Houtte: Mater. Sci. Forum Vol. 273-275 (1998), p.67.

Google Scholar

[14] W. Skrotzki, R. Tamm, C. -G. Oertel, B. Beckers, H. -G. Brokmeier and E. Rybacki: Mater. Sci. Eng. A Vol. 319-321 (2001), p.364.

DOI: 10.1016/s0921-5093(01)01034-6

Google Scholar

[15] J.J. Park: J. Mater. Process. Technol. Vol. 87 (1999), p.146.

Google Scholar

[16] C. -G. Oertel, I. Hünsche, W. Skrotzki, W. Knabl, A. Lorich and J. Resch: Mater. Sci. Eng. A Vol. 483-484 (2008), p.79.

Google Scholar

[17] Z.J. Li, G. Winther and N. Hansen: Acta Mater. Vol. 54 (2006), p.401.

Google Scholar

[18] G. Winther, D. Juul-Jensen and N. Hansen: Acta Mater. Vol. 45 (1997), p.2455.

Google Scholar

[19] P.I. Welch and H.J. Bunge: Mater. Sci. Technol. Vol. 2 (1986), p.354.

Google Scholar