Study of Structure and Li+ Ions Dynamics in Presence of Fe2O3 in Bi2O3∙B2O3 Glasses

Article Preview

Abstract:

Glasses having composition xLi2O∙(30-x)Fe2O3∙20Bi2O3∙50B2O3 (0 ≤ x ≤ 30, in mol%) have been prepared using normal melt-quench technique. The variation in density and molar volume with composition has been investigated in terms of the structural modification that takes place in the glass matrix on decreasing Fe2O3. Infrared spectra of these glasses were recorded over continuous spectral range (400-4000 cm-1) in an attempt to study their structure systematically. IR spectra show that with increase in Li2O/Fe2O3 ratio there is formation of more structural units (e.g. [FeO4/2]-Li+) in the glass network. Bi3+ cations are present as [BiO6] octahedral units and acts as modifier in this glass system. Further, the effect of transition metal ions (iron) on the dynamics of lithium bismuth borate glasses has been studied in the frequency range of 20 Hz - 1 MHz and in the temperature range 240 – 350 °C using impedance spectroscopy. Possible conduction mechanisms are discussed. Various AC and DC electrical and dielectric parameters have been calculated and analyzed. The results show that the contribution of electronic conduction towards conductivity decreases with decreasing iron concentration, which is understood to be due to hopping of electrons from Fe2+→Fe3+. The frequency dependent conductivity has been studied using both conductivity and modulus formalism. The absence of maximum observed in dielectric permittivity in the temperature and frequency range studied, indicate the non-ferroelectric behavior of the glasses.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 161)

Pages:

51-61

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. El-Egili, J. Phys.: Condens. Matter 8 (1996) 3419.

Google Scholar

[2] A. Moguš-Milanković, A. Šantić, M. Karabulut, D.E. Day, J. Non-Cryst. Solids 330 (2003) 128.

DOI: 10.1016/j.jnoncrysol.2003.08.050

Google Scholar

[3] M.M. El-Desoky, J. Non-Cryst. Solids 351 (2005) 3139.

Google Scholar

[4] H. El Mkami, B. Deroide, R. Backov, J.V. Zanchetta, J. Phys. Chem. Solids 61 (2000) 819.

Google Scholar

[5] P. Machowski, J.E. Garbarczyk, M. Wasiucionek, Solid State Ionics 157 (2003) 281.

DOI: 10.1016/s0167-2738(02)00222-9

Google Scholar

[6] A. Moguš-Milanković, A. Šantić, V. Ličina, D.E. Day, J. Non-Cryst. Solids 351 (2005) 3235.

DOI: 10.1016/j.jnoncrysol.2005.08.011

Google Scholar

[7] D.W. Hall, M.A. Newhause, N.F. Borrelli, W.H. Dumbaugh, L.A. Weidman, Phys. Lett. 54 (1989) 1293.

Google Scholar

[8] S. Sindhu, S. Sanghi, A. Agarwal, V.P. Seth, N. Kishore, J. Mater. Chem. Phys. 90 (2005) 83.

Google Scholar

[9] S. Lanfredi, P.S. Saia, R. Lebullenger, A.C. Hernandes, Solid State Ionics 146 (2002) 329.

Google Scholar

[10] V. Dimitrov, T. Komatsu, J. Ceram. Soc. Jpn. 107 (1999) 1012.

Google Scholar

[11] T. Honma, Y. Benino, T. Fujiwara, T. Komatsu, R. Sato, V. Dimitrov, J. Appl. Phys. 91 (2002) 5.

Google Scholar

[12] R.B. Rao, N.O. Gopal, N. Veeraiah, J. Alloys Comp. 368 (2004) 25.

Google Scholar

[13] S. Sindhu, S. Sanghi, A. Agarwal, Sonam, V.P. Seth, N. Kishore, Physica B 365 (2005) 65.

Google Scholar

[14] G. Yahya, Turk J. Phys. 27 (2003) 255.

Google Scholar

[15] S. Simon and M. Todea, J. Non-Cryst. Solids 352 (2006) 2947.

Google Scholar

[16] A. Moguš-Milanković, A. Šantić, S.T. Reis, K. Furić, D.E. Day, J. Non-Cryst. Solids 342 (2004) 97.

DOI: 10.1016/j.jnoncrysol.2004.07.012

Google Scholar

[17] B. Kusz, K. Trzebiatowski, R.J. Barczynski, Solid State Ionics 159 (2003) 293.

Google Scholar

[18] J.E. Garbarczyk, P. Jozwiak, M. Wasiucionek, J.L. Nowinski, Solid State Ionics 175 (2004) 691.

Google Scholar

[19] L. Murawski, R.J. Barczynski, D. Samatowicz, Solid State Ionics 157 (2003) 293.

Google Scholar

[20] H. Scholze, Glass: Nature, Structure and Properties, (Springer-Verlag, NY, 1991).

Google Scholar

[21] M.M. El-Desoky, K. Tahoon, M.Y. Hassaan, Mater. Chem. Phys. 69 (2001) 180.

Google Scholar

[22] D.L. Sidebottom, B. Roling, K. Funke, Phys. Rev. B 63 (2000) 024301.

Google Scholar

[23] P. Bergo, W.M. Pontuschka, J.M. Prison, C.C. Motta, J.R. Martinelli, J. Non-Cryst. Solids 348 (2004) 84.

DOI: 10.1016/j.jnoncrysol.2004.08.130

Google Scholar

[24] C. Kittel, Introduction to Solid State Physics, Wiley, NY, (1977).

Google Scholar

[25] P.B. Macedo, C.T. Moynhan, R. Bose, Phys. Chem. Glasses 13 (1972) 171.

Google Scholar

[26] R. Gerhardt, J. Phys. Chem. Solids 55 (1994) 1491.

Google Scholar