Some AI Based Approaches on Mobile Robots Motion Planning

Article Preview

Abstract:

This contribution presents some important issues on mobile robots path planning. While it is hard to find a unique architecture for all the applications involving mobile robots, specific approaches can provide suitable solutions. Thus, three distinct structures are discussed, all making use of certain artificial intelligence techniques. They address the use and integration of artificial vision, a planning approach based on temporal logics, and a multi agent scheme. The three methods refer cases of mobile robots evolving in environments where various types of sensorial information can be obtained. Each of the proposed solutions determines advantages when it is used for a certain class of tasks.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 166-167)

Pages:

101-108

Citation:

Online since:

September 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Roland Siegwart and Illah R. Nourbakhsh Introduction to Autonomous Mobile Robots, 2008 The MIT Press ISBN 0-262-19502-X.

DOI: 10.1017/s0263574705221628

Google Scholar

[2] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars, Computational Geometry Algorithms and Applications, 2008 Springer-Verlag ISBN 978-3-540-77973-5.

DOI: 10.1145/369836.571192

Google Scholar

[3] R. Gonzalez and R. Woods Digital Image Processing Third Edition, 2008 Pearson Pretince Hall ISBN 0-13-505267-9.

Google Scholar

[4] E.M.M. Clarke, D. Peled and O. Grumberg. Model checking. MIT Press, Boston, MA, USA, (1999).

Google Scholar

[5] M. Vardi. Branching vs. linear time: Final showdown, Lecture Notes in Computer Science, vol. 2031: 1-22, Springer-Verlag, London, UK, (2001).

DOI: 10.1007/3-540-45319-9_1

Google Scholar

[6] M. Kloetzer. Symbolic motion planning and control. Ph.D. thesis, Boston University, Boston, MA, USA, (2008).

Google Scholar

[7] S.G. Loizou and K.J. Kyriakopoulos. Automatic synthesis of multiagent motion tasks based on LTL specifications, IEEE Conference on Decision and Control, vol. 1, pages 153-158, (2004).

DOI: 10.1109/cdc.2004.1428622

Google Scholar

[8] G.E. Fainekos, H. Kress-Gazit and G.J. Pappas. Hybrid controllers for path planning: a temporal logic approach. IEEE Conference on Decision and Control, pages 4885-4890, Seville, Spain, (2005).

DOI: 10.1109/cdc.2005.1582935

Google Scholar

[9] M. Kloetzer and C. Belta. A fully automated framework for control of linear systems from temporal logic specifications. IEEE Transactions on Automatic Control, vol. 53(1): 287-297, (2008).

DOI: 10.1109/tac.2007.914952

Google Scholar

[10] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, G.J. Pappas. Symbolic planning and control of robot motion. IEEE Robotics and Automation Magazine, special issue on grand challenges for robotics, vol. 14(1): 61-71, (2007).

DOI: 10.1109/mra.2007.339624

Google Scholar

[11] L. Habets, P. Collins and J. van Schuppen. Reachability and control synthesis for piecewise-affine hybrid systems on simplices. IEEE Transactions on Automatic Control, vol. 51: 938-948, (2006).

DOI: 10.1109/tac.2006.876952

Google Scholar

[12] J. Desai, J. Ostrowski and V. Kumar. Controlling formations of multiple mobile robots. IEEE Conference on Robotics and Automation, vol. 4, 2864–2869, Leuven, Belgium, (1998).

DOI: 10.1109/robot.1998.680621

Google Scholar

[13] R. Murphy: Introduction to AI Robotics, The MIT Press, Cambridge, (2000).

Google Scholar

[14] S. Russell and P. Norvig: Artificial Intelligence. A Modern Approach, Prentice Hall, New Jersey, (1995).

Google Scholar

[15] J. Xu, F. Hu, X. Han, Realization of Bidirectional A* Algorithm Based on the Hierarchical Thinking During the Process of Path Planning, International Conference on Computer Science and Software Engineering, 2008, pp.415-418.

DOI: 10.1109/csse.2008.1063

Google Scholar