Pauli Paramagnetism of the Novel Uranium Intermediate Phase UCo3-xGex (0.2 ≤ x ≤ 0.4)

Article Preview

Abstract:

The new compound UCo3-xGex with x = 0.4 was prepared by direct solidification of the corresponding liquid phase, followed by annealing at 973 K. Single crystal X-ray diffraction carried out at room temperature showed that it crystallizes with the hexagonal space group P63/mmc (n°194) and the unit-cell parameters a = 4.890(5) Å and c = 16.405(5) Å. The substitution of Co atoms by germanium atoms in UCo3 (PuNi3 structure type) yields stabilization of the CeNi3 structure. The homogeneity range, evaluated by energy dispersive spectroscopy analysis, extends from x = 0.2(1) to 0.4(1). The electronic properties were investigated by means of DC magnetic susceptibility and DC electrical resistivity measurements. The phase is a Pauli paramagnet and exhibits electrical conductivity characteristic of strongly disordered metals.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 170)

Pages:

232-239

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. H. Hill and B. T. Matthias: Phys. Rev. Vol. 168 (1968), p.464.

Google Scholar

[2] A. Dommann, H. Brändle, F. Hulliger and P. Fischer: J. Less-Common Met. Vol. 158 (1990), p.287.

DOI: 10.1016/0022-5088(90)90063-p

Google Scholar

[3] J. Turán, A. Zentko, J. Štenberk and J. Hřebík: Acta Phys. Slov. Vol. 31 (1981), p.143.

Google Scholar

[4] B. Chevalier, P. Gravereau, T. Berlureau, L. Fournès and J. Etourneau: J. Alloys Compd. Vol. 233 (1996), p.174.

DOI: 10.1016/0925-8388(95)02011-x

Google Scholar

[5] A. Soudé, O. Tougait, M. Pasturel, D. Kaczorowski and H. Noël: J. Solid State Chem. Vol. 183 (2010) 1180.

DOI: 10.1016/j.jssc.2010.03.015

Google Scholar

[6] A. Soudé, O. Tougait, M. Pasturel, D. Kaczorowski and H. Noël: J. Alloys Compd., submitted.

Google Scholar

[7] D. T. Cromer and C. E. Olsen: Acta Crystallogr. Vol. 12 (1959), p.689.

Google Scholar

[8] T. Matsui, R. D. Stevenson, R. D. Kirby and D. J. Sellmyer: J. Appl. Phys. Vol. 83 (1998), p.7381.

Google Scholar

[9] L. O. Wasylechko, Y. N. Grin and A. A. Fedorchuk: J. Alloys Compd. Vol. 219 (1995), p.222.

Google Scholar

[10] Brüker-AXS: Collect, Denzo, Scalepack, Sortav. Kappa CCD Program Package, (Delft, The Netherlands, 1998).

Google Scholar

[11] Z. Otwinowski and W. Minor, in: Processing of X-ray Diffraction Data Collected in Oscillation Mode, edited by C.W. Carter, Jr. & R. M. Sweet, volume 276: Macromolecular Crystallography of Methods in Enzymology, part A, pp.307-326, Academic Press (1997).

DOI: 10.1016/s0076-6879(97)76066-x

Google Scholar

[12] R. H. Blessing: Acta Crystallogr. Sect A Vol. 51 (1995), p.33.

Google Scholar

[13] A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori and R. J. Spagna: J. Appl. Crystallogr. Vol. 32 (1999), p.115.

DOI: 10.1107/s0021889898007717

Google Scholar

[14] G.M. Sheldrick: SHELXS97 and SHELXL97, Program for StructureSolution and Refinement (University of Göttingen, Germany, 1997).

Google Scholar

[15] E. Parthé, K. Cenzual and R. Gladyshevskii: J. Alloys Compd. Vol. 197 (1993), p.291.

Google Scholar

[16] E. Teatum, K. Gschneidner and J. Waber, in: Compilation of calculated data useful in predicting metallurgical behaviour of the elements in binary alloy systems, LA-2345 of Los Alamos Scientific Laboratory (1960).

DOI: 10.2172/4789465

Google Scholar

[17] N. C. Baenziger, R. E. Rundle, A. I. Snow and A. S. Wilson: Acta Crystallogr. Vol. 3 (1950), p.34.

Google Scholar

[18] A. E. Dwight: Acta Crystallogr. B Vol. 24 (1968), p.1395.

Google Scholar

[19] J. Yakinthos and J. Rossat-Mignod: Phys. Status Solidi Vol. 50 (1972), p.47.

Google Scholar

[20] A. Perricone and H. Noël: Intermetallics Vol. 10 (2002), p.519.

Google Scholar