High-Yield Direct Synthesis of Mg2FeH6 from the Elements by Reactive Milling

Article Preview

Abstract:

Magnesium complex hydrides as Mg2FeH6 are interesting phases for hydrogen storage in the solid state, mainly due to its high gravimetric and volumetric densities of H2. However, the synthesis of this hydride is not trivial because the intermetallic phase Mg2Fe does not exist and Mg and Fe are virtually immiscible under equilibrium conditions. In this study, we have systematically studied the influence of the most important processing parameters in reactive milling under hydrogen (RM) for Mg2FeH6 synthesis: milling time, ball-to-powder weight ratio (BPR), hydrogen pressure and type of mill. Low cost 2Mg-Fe mixtures were used as raw materials. An important control of the Mg2FeH6 direct synthesis by RM was attained. In optimized combinations of the processing parameters, very high proportions of the complex hydride could be obtained.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 170)

Pages:

259-262

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Massalski, H. Okamoto, P. Subramanian, L. Kacprzak (Eds. ), Binary Alloy Phase Diagrams, 2nd ed., American Society for Metals, Metals Park, OH, (1990).

Google Scholar

[2] J. -J. Didisheim, P. Zolliker, K. Yvon, P. Fisher, J. Schefer, M. Gubelmann, A.F. Williams: Inorg. Chem. 23 (1984) (1953).

DOI: 10.1021/ic00181a032

Google Scholar

[3] P. Selvam, K. Yvon: Int. J. Hydrogen Energy 16 (9) (1991) 615.

Google Scholar

[4] Y. G. Konstanchuk, E. Ivanov, M. Pezat, B. Darriet, V. Boldyrev, P. Hagenmuller: J. Less-Common Met. 131 (1987) 181.

DOI: 10.1016/0022-5088(87)90516-9

Google Scholar

[5] J. Huot, H. Hayakawa, E. Akiba: J. Alloys Compd. 248 (1997) 164.

Google Scholar

[6] S. S. Raman, D. J. Davison, J. -L. Bobet, O. N. Srivastava: J. Alloys Compd. 333 (2002) 282.

Google Scholar

[7] F.C. Gennari, F.J. Castro, J.J. Andrade Gamboa: J. Alloys Compd. 339 (2002) 261.

Google Scholar

[8] S. Li, R. A. Varin, O. Morozova, T. Khomenko: J. Alloys Compd. 384 (2004) 231.

Google Scholar

[9] J. A. Puszkiel, P. Arneodo Larochette, F. C. Gennari: J. Power Sources 186 (2009) 185.

Google Scholar

[10] Y. Wang, F. Cheng, C. Li, Z. Tao, J. Chen: J. Alloys Compd. In press, doi: 10. 1016/j. allcom. 2010. 08. 119.

Google Scholar

[11] L. Lu, M. O. Lai, Mechanical Alloying, Kluwer Academic Publishers, Boston, (1998).

Google Scholar

[12] A. Coelho, Topas Academic, 4. 1 ed.; Coelho Software: Brisbane, Australia, (2007).

Google Scholar

[13] M. A. Bab, L. Mendoza-Zélis, L. C. Damonte, Acta Mater. 49 (2001) 4205-4213.

DOI: 10.1016/s1359-6454(01)00309-3

Google Scholar

[14] M. A. Bab, L. Mendoza-Zélis, Scripta Mater. 50 (2004) 99-104.

Google Scholar