Phase Relation of FeS2-VS2 System and New Phase of Defect Troilite Structure

Article Preview

Abstract:

A large defective troilite (Fe0.9V0.1)0.82S is prepared by a sealed silica-tube method at 800oC and characterized by a powder X-ray diffraction method and using a magnetic property measurement system. The crystal structures of a defective troilite and non defective troilite are analyzed by Rietveld method. The large defect enhances the Fe-Fe pairing and suppresses the waving of Fe-chain along c-direction. The antiferromagnetic property is observed on both troilites. The spin-flip transition temperature of the large defective troilite is 9K.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 170)

Pages:

92-96

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. I. Matveenko, Int.J. Mod. Phys. B, Vol. 23 (2009), p.4297.

Google Scholar

[2] Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya and H. Hosono, J. Am. Chem. Soc., Vol. 128 (2006), p.10012.

DOI: 10.1021/ja063355c

Google Scholar

[3] B. Predel, Phase equilibria of binary alloys, p.1103, (Springer-Verlag, Berlin 2003).

Google Scholar

[4] B.J. Skinner, R.C. Erd and F.S. Grimaldi, Am. Mineral., Vol. 49 (1964), p.543.

Google Scholar

[5] A.V. Powell, P. Vaqueiro, K.S. Knight, L.C. Chapon and R.D. Sanchez, Phys. Rev. B, Vol. 70 (2004), pp.014415-1.

Google Scholar

[6] N. Morimoto, A. Gyobu, H. Mukaiyama and E. Izawa, Econ. Geol. Bull. Soc. Econ. Geol., Vol. 70 (1975), p.824.

Google Scholar

[7] H.E. King Jr. and C.T. Prewitt, Acta Cryst., B, Vol. 38 (1982) , P. 1877.

Google Scholar

[8] M. Tokonami, K. Nishiguchi and N. Morimoto, Am. Mineral., Vol. 57 (1972) , p.1066.

Google Scholar

[9] K. Adachi, Solid State Phys., Vol. 3, (1968) p.446. (Japanese journal).

Google Scholar

[10] F. Keller-Besrest and G. Collin, J. Solid State Chem., Vol. 84 (1990), p.211.

Google Scholar

[11] F. Keller-Besrest and G. Collin,J. Solid State Chem., Vol. 84 (1990), p.194.

Google Scholar

[12] Y. Oka, K. Kosuge and S. Kachi, J. Solid State Chem., Vol. 23 (1978), p.11.

Google Scholar

[13] Y. Oka, K. Kosuge and S. Kachi, Mater. Res. Bull., Vol. 12 (1977), p.1117.

Google Scholar

[14] Y. Oka, K. Kosuge and S. Kachi, Mater. Res. Bull., Vol. 15 (1980), p.521.

Google Scholar

[15] H. Wada, Bull. Chem. Soc. Jpn., Vol. 52 (1979) , p.2918.

Google Scholar

[16] H. Nozaki and H. Wada. J. Solid State Chem., Vol. 47 (1983), p.69.

Google Scholar

[17] F. I zumi and K. Momma, Solid State Phenom., Vol. 130 (2007), p.15.

Google Scholar

[18] K. Momma and F. Izumi, J. Appl. Crystallogr. Vol. 41 (2008), p.653.

Google Scholar

[19] J.L. Horwood, M.G. Townsend and A.H. Webster, J. Solid State Chem., Vol. 17 (1976), p.34.

Google Scholar

[20] H. Nakazawa and N. Morimoto, Mater. Res. Bull., Vol. 6 (1971), p.345.

Google Scholar