Special Microstructures and Twin Features in Ti50Ni50-X(Pd,Au)X at Small Hysteresis

Article Preview

Abstract:

The breaking of symmetry due to atomic displacements in the austenite-martensite phase transformation generally leads to their crystallographic incompatibility. Energy minimizing accommodation mechanisms such as martensite twinning have been recently shown to be a source of hysteresis and irreversible plastic deformation. Compatibility between the two phases can however be achieved by carefully tuning lattice parameters through composition change. A dramatic drop in hysteresis and novel microstructures such as a lowering of the amount of twin lamella are then observed. Related theoretical and simulation works also support the existence of such microstructures including peculiar self-accommodating configurations at near-compatibility. We present the transmission electron microscopy (TEM) study of these novel microstructures for the alloy systems Ti50Ni50-xPdx and Ti50Ni50-xAux where the composition was systemically tuned to approach perfect compatibility. High resolution imaging of the interface between austenite and martensite supplies evidences of compatibility at the atomic level.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

105-110

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Cui, Y.S. Chu, O.O. Famodu, Y. Furuya, J. Hattrick-Simpers, R.D. James, A. Ludwig, S. Thienhaus, M. Wuttig, Z. Zhang and I. Takeuchi: Nat. Mater. Vol. 5 (2006), p.286.

DOI: 10.1038/nmat1593

Google Scholar

[2] J. Ortin and L. Delaey: Int. J. Non Linear Mech. Vol. 37 (2002), p.1275.

Google Scholar

[3] J.M. Ball and R.D. James: Phil. Trans. R. Soc. Lond. A Vol. 338 (1992), p.389.

Google Scholar

[4] J.M. Ball, R.D. James: Arch. Ration. Mech. Anal. Vol. 100 (1987), p.13.

Google Scholar

[5] Z. Zhang, R. D. James and S. Müller: Acta Mater. Vol. 57 (2009), p.4332.

Google Scholar

[6] Q.P. Sun, T.T. Xu and X. Zhang: J. Eng. Mat. Tech. Vol. 121 (1999), p.38.

Google Scholar

[7] R. Hamilton, H. Sehitoglu, Y. Chumlyakov and H. Maier: Acta Mater. Vol. 52 (2004), p.3383.

Google Scholar

[8] T. Simon, A. Kröger, C. Somsen, A. Dlouhy and G. Eggeler: Acta Mater. Vol. 58 (2010), p.1850.

Google Scholar

[9] D.M. Norfleet, P.M. Sarosi, S. Manchiraju, M.F. -X. Wagner, M.D. Uchic, P.M. Anderson and M.J. Mills: Acta Mater. Vol. 57 (2009), p.3549.

DOI: 10.1016/j.actamat.2009.04.009

Google Scholar

[10] R. Delville, D. Schryvers, Z. Zhang and R.D. James: Scr. Mater. Vol. 6 (2009), p.293.

Google Scholar

[11] R. Delville, S. Kasinathan, Z. Zhang, J. Van Humbeeck, R.D. James and D. Schryvers: Phil. Mag. Vol. 90 (2010), pp.0-177.

Google Scholar

[12] Y.C. Lo and S.K. Wu: Scr. Metall. Mater. Vol. 27 (1992), p.1097.

Google Scholar

[13] R. Zarnetta, R. Takahashi, M. Young et al.: Adv. Funct. Mater. Vol. 20 (2010), p. (1917).

Google Scholar

[14] M. Nishida, T. Hara, Y. Morizono, A. Ikeya, H. Kijima and A. Chiba: Acta Mater. Vol. 45 (1997), p.4847.

DOI: 10.1016/s1359-6454(97)00162-6

Google Scholar

[15] K. Madangopal: Acta Mater. Vol. 45 (1997), p.5347.

Google Scholar

[16] S.K. Wu and C.M. Wayman: Metallography Vol. 20 (1987) p.359.

Google Scholar