Distribution of Dislocations in Nanostructured Bainite

Article Preview

Abstract:

The dislocation density in ferrite and austenite of a bainitic microstructure obtained by transformation at very low temperature (300 °C) has been determined using transmission electron microscopy. Observations revealed that bainitic ferrite plates consist of two distinctive regions with different substructures. A central region in the ferrite plate is observed with dislocations that may result from lattice-invariant deformation at the earlier stage of bainite growth. As plastic deformation occurs in the surrounding austenite to accommodate the transformation strain as growth progresses, the Ferrite/Austenite interface has also a very distinctive dislocation profile. In addition, atom-probe tomography suggested that dislocation tangles observed in the vicinity of the ferrite/austenite interface might trap higher amount of carbon than single dislocations inside the bainitic ferrite plate.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

117-122

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.K.D.H. Bhadeshia and J.W. Christian: Metall. Trans. Vol. 21A (1990), p.767.

Google Scholar

[2] G.R. Srinivasan and C.M. Wayman: Acta Metall. Vol. 16 (1968), p.621.

Google Scholar

[3] M. Nemoto: High Voltage Electron Microscopy (Academic Press, USA 1974).

Google Scholar

[4] H.K.D.H. Bhadeshia and D.V. Edmonds: Metall. Trans. Vol. 10A (1979), p.895.

Google Scholar

[5] B.P.J. Sandvik and H.P. Nevalainen: Met. Technol. Vol. 15 (1981), p.213.

Google Scholar

[6] T. Ogura, C.J. McMahon, H.C. Feng and V. Vitek: Acta Metall. Vol. 26 (1978), p.1317.

Google Scholar

[7] T. Ogura, T. Watanabe, S. Karashima and T. Masumoto: Acta Metall. Vol. 35 (1987), p.1807.

Google Scholar

[8] W. Swiatnicki, S. Lartigue-Korinek and J.Y. Laval: Acta Metall. Mater. Vol. 43 (1995), p.795.

Google Scholar

[9] F.G. Caballero, M.K. Miller, S.S. Babu and C. Garcia-Mateo: Acta Mater. Vol. 55 (2007), p.381.

Google Scholar

[10] T. Moritani, N. Miyajima, T. Furuhara and T. Maki: Scripta Mater. Vol. 47 (2002), p.193.

Google Scholar

[11] P.B. Hirsch, A. Howie, R.B. Nicholson, D.W. Pashley and M.J. Whelan: Electron Microscopy of Thin Crystals (Krieger Publishing, USA 1977).

Google Scholar

[12] D.B. Williams and C.B. Carter: Transmition: Electron Microscopy (Penum Publishing, USA 1996).

Google Scholar

[13] S. Morito, J. Nishikawa and T. Maki: ISIJ Int. Vol. 43 (2003), p.1475.

Google Scholar

[14] A. Shibata, S. Morito, T. Furuhara and T. Maki: Acta Mater. Vol. 57 (2009), p.483.

Google Scholar

[15] C. Garcia-Mateo, F.G. Caballero and H.K.D.H. Bhadeshia: ISIJ Int. Vol. 43 (2003), p.1238.

Google Scholar

[16] C. Garcia-Mateo and F.G. Caballero: ISIJ Int. Vol. 45 (2005), p.1736.

Google Scholar

[17] C. Garcia-Mateo, F.G. Caballero, C. Capdevila and C. Garcia de Andres: Scripta Mater. Vol. 61 (2009), p.855.

Google Scholar

[18] M. Takahashi and H.K.D.H. Bhadeshia: Mater. Sci. Technol. Vol. 6 (1990), p.592.

Google Scholar

[19] D. Kalish and M. Cohen: Mater. Sci. Eng. Vol. 6A (1970), p.156.

Google Scholar

[20] J. Wilde, A. Cerezo and G.D.W. Smith: Scripta Mater. Vol. 43 (2000), p.39.

Google Scholar

[21] M.K. Miller, P.A. Beaven and G.D.W. Smith: Metall. Mater. Trans. Vol. 12A (1981), p.1187.

Google Scholar

[22] K.A. Taylor, L. Chang, G.B. Olson, G.D.W. Smith, M. Cohen and J.B. Van der Sande: Metall. Mater. Trans. Vol. 20A (1989), p.2717.

Google Scholar

[23] E.V. Pereloma, I.B. Timokhina, J.J. Jonas and M.K. Miller: Acta Mater. Vol. 54 (2006), p.4539.

Google Scholar