Acoustic Emission Avalanches in Martensitic Transitions: New Perspectives for the Problem of Source Location

Article Preview

Abstract:

Different experimental procedures for the location of sources of Acoustic Emission (AE) avalanches during Martensitic Transformations are discussed. A first example corresponds to the 1D location of AE events during stress-induced martensitic transitions in a Cu-Zn-Al shape memory alloy (3.5 cm length). The obtained data allows monitoring of the interface advancement with a spatial resolution of less than 1 mm. Secondly, we discuss two different ideas that have significant potential for improving this resolution in the case of thermally induced transitions in small single crystalline samples (~1 cm): the use of elastodynamic simulations based on finite element methods and the simultaneous detection of AE and Barkhausen noise in ferromagnetic samples.

You might also be interested in these eBooks

Info:

[1] C. B. Scruby: An introduction to acoustic emission, J. Phys. E: Sci. Instrum. 20, 946 (1987).

Google Scholar

[2] E. Bonnot, Ll. Mañosa, A. Planes, D. Soto-Parra, E. Vives, B. Ludwig, C. Strothkaemper, T. Fukuda, and T. Kakeshita : Acoustic emission in the fcc-fct martensitic transition of Fe68. 8Pd31. 2 , Phys. Rev. B 78, 184103 (2008).

DOI: 10.1103/physrevb.78.184103

Google Scholar

[3] M. C. Gallardo et al.: Avalanche criticality in the martensitic transition of Cu67. 64 Zn16. 71 Al15. 65 shape memory alloy: a calorimetric and acoustic emission study, Phys. Rev B 81, 174102 (2010).

Google Scholar

[4] F. J. Pérez-Reche, E. Vives, Ll. Mañosa, and A. Planes: Athermal character of structural phase transitions, Phys. Rev. Lett. 87, 195701 (2001).

DOI: 10.1103/physrevlett.87.195701

Google Scholar

[5] E. Vives, I. Ràfols, Ll. Mañosa, J. Ortín, and A. Planes: Statistics of avalanches in martensitic transformations. I. Acoustic emission experiments, Phys. Rev. B 52, 12644 (1995).

DOI: 10.1103/physrevb.52.12644

Google Scholar

[6] F. J. Perez-Reche, L. Truskinovsky, and G. Zanzotto: Training-induced criticality in martensites, Phys. Rev. Lett. 99, 075501 (2007).

DOI: 10.1103/physrevlett.99.075501

Google Scholar

[7] F. -J. Pérez-Reche, M. Stipcich, E. Vives, Ll. Mañosa, and A. Planes : Kinetics of martensitic transitions in Cu-Al-Mn under thermal cycling: Analysis at multiple length scales, Phys. Rev. B 69, 064101 (2004).

DOI: 10.1103/physrevb.69.064101

Google Scholar

[8] Ll. Carrillo, Ll. Mañosa, J. Ortín, A. Planes, and E. Vives: Experimental Evidence for Universality of Acoustic Emission Avalanche Distributions during Structural Transitions, Phys. Rev. Lett. 81, 1889 (1998).

DOI: 10.1103/physrevlett.81.1889

Google Scholar

[9] F. J. Pérez-Reche, B. Tadić, Ll. Mañosa, A. Planes, and E. Vives: Driving rate effects in avalanche-mediated first-order phase transitions, Phys. Rev. Lett. 93, 195701 (2004).

DOI: 10.1103/physrevlett.93.195701

Google Scholar

[10] E. Vives, D. Soto-Parra, Ll. Mañosa, R. Romero, and A. Planes: Driving-induced crossover in the avalanche criticality of martensitic transitions, Phys. Rev. B 80, 180101 (2009).

DOI: 10.1103/physrevb.80.180101

Google Scholar

[11] F. Pérez-Reche, L. Truskinovsky, and G. Zanzotto: Driving-induced crossover: from classical criticality to self-organized criticality, Phys. Rev. Lett. 101, 230601 (2008).

DOI: 10.1103/physrevlett.101.230601

Google Scholar

[12] Ll. Mañosa, A. Planes, D. Rouby, M. Morin, P. Fleischmann and J.L. Macqueron: Acoustic Emission during thermoelastic martensitic transformations, Appl. Phys. Lett. 54, 2574 (1989).

DOI: 10.1063/1.101053

Google Scholar

[13] Z.Z. Yu and P.C. Clapp: Quantitative Analysis of acoustic emission signals, J. Appl. Phys. 62, 2212 (1987).

Google Scholar

[14] J.D. Achenbach, Wave Propagation in Elastic Solids, North-Holland Series in Applied Mathematics and Mechanics, Amsterdam (1984).

Google Scholar

[15] C.B. Scruby: Quantitative Acoustic Emission Techniques, in Research Techniques in Non Destructive Testing, vol. VIII, pag. 141, edited by R.S. Sharpe, Academic Press, London (1985).

Google Scholar

[16] E.M. Lympertos and E.S. Dermatas: Acoustic Emission source location in dispersive media, Signal Processing 87, 3218 (2007).

DOI: 10.1016/j.sigpro.2007.05.010

Google Scholar

[17] J. Weiss and D. Marsan, Three-Dimensional Mapping of Dislocation Avalanches: Clustering and Space/Time Coupling, Science 299, 89 (2003).

DOI: 10.1126/science.1079312

Google Scholar

[18] E. Bonnot, R. Romero, X. Illa, Ll. Mañosa, A. Planes, and E. Vives: Hysteresis in a system driven by either generalized force or displacement variables: Martensitic phase transition in single-crystalline Cu-Zn-Al, Phys. Rev. B 76, 064105 (2007).

DOI: 10.1103/physrevb.76.064105

Google Scholar

[19] E. Bonnot, E. Vives, Ll. Mañosa, and A. Planes: Acoustic emission and energy dissipation during front propagation in a stress-driven martensitic transition, Phys Rev B 78, 094104 (2008).

DOI: 10.1103/physrevb.78.094104

Google Scholar

[20] D. Vaughn and J. Mould, PZFlex Time Domain Finite Element Analysis Package. Los Altos, CA: Weidlinger Associates, Inc., (2001).

Google Scholar

[21] G. Bertotti, Hysteresis in Magnetism (Academic, New York 1998).

Google Scholar

[22] M.R. Sullivan, A.A. Shah and H.D. Chopra, Pathways of structural and magnetic transition in ferromagnetic shape-memory alloys, Phys. Rev. B 70, 094428 (2004).

DOI: 10.1103/physrevb.70.094428

Google Scholar