[1]
C. B. Scruby: An introduction to acoustic emission, J. Phys. E: Sci. Instrum. 20, 946 (1987).
Google Scholar
[2]
E. Bonnot, Ll. Mañosa, A. Planes, D. Soto-Parra, E. Vives, B. Ludwig, C. Strothkaemper, T. Fukuda, and T. Kakeshita : Acoustic emission in the fcc-fct martensitic transition of Fe68. 8Pd31. 2 , Phys. Rev. B 78, 184103 (2008).
DOI: 10.1103/physrevb.78.184103
Google Scholar
[3]
M. C. Gallardo et al.: Avalanche criticality in the martensitic transition of Cu67. 64 Zn16. 71 Al15. 65 shape memory alloy: a calorimetric and acoustic emission study, Phys. Rev B 81, 174102 (2010).
Google Scholar
[4]
F. J. Pérez-Reche, E. Vives, Ll. Mañosa, and A. Planes: Athermal character of structural phase transitions, Phys. Rev. Lett. 87, 195701 (2001).
DOI: 10.1103/physrevlett.87.195701
Google Scholar
[5]
E. Vives, I. Ràfols, Ll. Mañosa, J. Ortín, and A. Planes: Statistics of avalanches in martensitic transformations. I. Acoustic emission experiments, Phys. Rev. B 52, 12644 (1995).
DOI: 10.1103/physrevb.52.12644
Google Scholar
[6]
F. J. Perez-Reche, L. Truskinovsky, and G. Zanzotto: Training-induced criticality in martensites, Phys. Rev. Lett. 99, 075501 (2007).
DOI: 10.1103/physrevlett.99.075501
Google Scholar
[7]
F. -J. Pérez-Reche, M. Stipcich, E. Vives, Ll. Mañosa, and A. Planes : Kinetics of martensitic transitions in Cu-Al-Mn under thermal cycling: Analysis at multiple length scales, Phys. Rev. B 69, 064101 (2004).
DOI: 10.1103/physrevb.69.064101
Google Scholar
[8]
Ll. Carrillo, Ll. Mañosa, J. Ortín, A. Planes, and E. Vives: Experimental Evidence for Universality of Acoustic Emission Avalanche Distributions during Structural Transitions, Phys. Rev. Lett. 81, 1889 (1998).
DOI: 10.1103/physrevlett.81.1889
Google Scholar
[9]
F. J. Pérez-Reche, B. Tadić, Ll. Mañosa, A. Planes, and E. Vives: Driving rate effects in avalanche-mediated first-order phase transitions, Phys. Rev. Lett. 93, 195701 (2004).
DOI: 10.1103/physrevlett.93.195701
Google Scholar
[10]
E. Vives, D. Soto-Parra, Ll. Mañosa, R. Romero, and A. Planes: Driving-induced crossover in the avalanche criticality of martensitic transitions, Phys. Rev. B 80, 180101 (2009).
DOI: 10.1103/physrevb.80.180101
Google Scholar
[11]
F. Pérez-Reche, L. Truskinovsky, and G. Zanzotto: Driving-induced crossover: from classical criticality to self-organized criticality, Phys. Rev. Lett. 101, 230601 (2008).
DOI: 10.1103/physrevlett.101.230601
Google Scholar
[12]
Ll. Mañosa, A. Planes, D. Rouby, M. Morin, P. Fleischmann and J.L. Macqueron: Acoustic Emission during thermoelastic martensitic transformations, Appl. Phys. Lett. 54, 2574 (1989).
DOI: 10.1063/1.101053
Google Scholar
[13]
Z.Z. Yu and P.C. Clapp: Quantitative Analysis of acoustic emission signals, J. Appl. Phys. 62, 2212 (1987).
Google Scholar
[14]
J.D. Achenbach, Wave Propagation in Elastic Solids, North-Holland Series in Applied Mathematics and Mechanics, Amsterdam (1984).
Google Scholar
[15]
C.B. Scruby: Quantitative Acoustic Emission Techniques, in Research Techniques in Non Destructive Testing, vol. VIII, pag. 141, edited by R.S. Sharpe, Academic Press, London (1985).
Google Scholar
[16]
E.M. Lympertos and E.S. Dermatas: Acoustic Emission source location in dispersive media, Signal Processing 87, 3218 (2007).
DOI: 10.1016/j.sigpro.2007.05.010
Google Scholar
[17]
J. Weiss and D. Marsan, Three-Dimensional Mapping of Dislocation Avalanches: Clustering and Space/Time Coupling, Science 299, 89 (2003).
DOI: 10.1126/science.1079312
Google Scholar
[18]
E. Bonnot, R. Romero, X. Illa, Ll. Mañosa, A. Planes, and E. Vives: Hysteresis in a system driven by either generalized force or displacement variables: Martensitic phase transition in single-crystalline Cu-Zn-Al, Phys. Rev. B 76, 064105 (2007).
DOI: 10.1103/physrevb.76.064105
Google Scholar
[19]
E. Bonnot, E. Vives, Ll. Mañosa, and A. Planes: Acoustic emission and energy dissipation during front propagation in a stress-driven martensitic transition, Phys Rev B 78, 094104 (2008).
DOI: 10.1103/physrevb.78.094104
Google Scholar
[20]
D. Vaughn and J. Mould, PZFlex Time Domain Finite Element Analysis Package. Los Altos, CA: Weidlinger Associates, Inc., (2001).
Google Scholar
[21]
G. Bertotti, Hysteresis in Magnetism (Academic, New York 1998).
Google Scholar
[22]
M.R. Sullivan, A.A. Shah and H.D. Chopra, Pathways of structural and magnetic transition in ferromagnetic shape-memory alloys, Phys. Rev. B 70, 094428 (2004).
DOI: 10.1103/physrevb.70.094428
Google Scholar