Elastic and Dielectric Measurements of the Structural Transformations in the Ferroelectric Perovskite (Na1/2Bi1/2)1-XBaXTiO3

Article Preview

Abstract:

The perovskite (Na1/2Bi1/2)TiO3 (NBT) undergoes a series of structural and polar transitions starting from the high temperature paraelectric phase: tetragonal paraelectric, tetragonal antiferroelectric, rhombohedral antiferroelectric and finally rhombohedral ferroelectric, according to neutron diffraction and dielectric spectroscopy. In solid solution with BaTiO3 (BT) the ferroelectric phase changes from rhombohedral to tetragonal, at the so-called morphotropic phase boundary, and the phases at higher temperature become ill-defined, also because of the large lattice disorder induced by the coexistence of differently charged cations in the same sublattice. Combined dielectric and anelastic spectroscopy measurements are presented, which clarify some issues related to the phase transitions in NBT-BT. The influence of Ba substitution on the tetragonal antiferroelectric phase is determined for the first time, and the possibility that a monoclinic phase, although with very short coherence length, exists near the morphotropic phase boundary is discussed in view of a large maximum of the elastic compliance.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

161-165

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Fu and R. E. Cohen, Nature 403, 281 (2000).

Google Scholar

[2] R. Guo, L. E. Cross, S. -E. Park, B. Noheda, D. E. Cox, and G. Shirane, Phys. Rev. Lett. 84, 5423 (2000).

Google Scholar

[3] J. Frantti, Y. Fujioka, and R. M. Nieminen, J. Phys.: Condens. Matter 20, 472203 (2008).

Google Scholar

[4] B. Noheda and D. E. Cox, Phase Transit. 79, 5 (2006).

Google Scholar

[5] T. Takenaka and K. Maruyama and K. Sakata, Jpn. J. Appl. Phys. 30, 2236 (1991).

Google Scholar

[6] Y. Hiruma, Y. Watanabe, H. Nagata and T. Takenaka, Key Engin. Mater. 350, 93 (2007).

Google Scholar

[7] G. O. Jones and P. A. Thomas, Acta Crystallogr. B 58, 168 (2002).

Google Scholar

[8] F. Cordero, F. Craciun, F. Trequattrini, E. Mercadelli and C. Galassi, Phys. Rev. B 81, 144124 (2010).

Google Scholar

[9] F. Cordero, F. Craciun and C. Galassi, Phys. Rev. Lett. 98, 255701 (2007).

Google Scholar

[10] W. Rehwald, Adv. Phys. 22, 721 (1973).

Google Scholar

[11] M. A. Carpenter and E. K. H. Salje, Eur. J. Mineral. 10, 693 (1998).

Google Scholar

[12] E. K. H. Salje and H. Zhang, J. Phys.: Condens. Matter 21, 035901 (2009).

Google Scholar

[13] J. Kreisel, P. Bouvier, B. Dkhil, P. A. Thomas, A. M. Glazer, T. R. Welberry, B. Chaabane, and M. Mezouar, Phys. Rev. B 68, 014113 (2003).

Google Scholar

[14] I. P. Aleksandrova, A. A. Sukhovsky, Yu. N. Ivanov, Yu. E. Yablonskaya, and S. B. Vakhrushev, Phys. Solid State 50, 496 (2008).

Google Scholar