Phase-Field Modelling of Spinodal Decomposition during Ageing and Heating

Abstract:

Article Preview

Despite the tremendous success of phase-field (PF) modelling in predicting many of the experimentally observed microstructures in solids, additional progress is required in order to apply it to predict microstructure evolution in real alloy systems. One way to achieve this is to couple thermodynamic and kinetic databases with PF model. In this work, we present phase-field simulations of spinodal decomposition in Fe-Cr alloy during thermal ageing and anisothermal heating. In the PF method, the local free energy is directly constructed using the CALPHAD method. During isothermal ageing, the morphology of decomposed phases consisted in an interconnected irregular shape for short ageing times, and a further ageing caused the change to a droplet like shape of the decomposed Cr-rich phase. The influence of heating rate on phase transformations is then simulated and compared with experimental results obtained by differential thermal analysis, carried out with heating rates in the range 0.5 °C.min-1 to 15 °C.min-1. The simulation results show that heating rate strongly influences the microstructure morphology.

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Edited by:

Yves Bréchet, Emmanuel Clouet, Alexis Deschamps, Alphonse Finel and Frédéric Soisson

Pages:

1072-1077

DOI:

10.4028/www.scientific.net/SSP.172-174.1072

Citation:

N. Lecoq et al., "Phase-Field Modelling of Spinodal Decomposition during Ageing and Heating", Solid State Phenomena, Vols. 172-174, pp. 1072-1077, 2011

Online since:

June 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.