Description of Crystallographic Morphologies of Product Phases with Singularity and Δg Distribution

Article Preview

Abstract:

Product phases from various phase transformations often exhibit fascinating morphologies. Facets of unique crystallographic orientations are characteristic of the morphologies. Based on a comparison of facets in the surfaces and interfaces of crystals, this paper proposes to use singularity as the common features of facets on a crystal. While association of facets with energy singularity has been established from the Wulff construction, we defined singularity in structure with an absence of one or more types of defects common to a vicinal surface or interface. Singularity in an interfacial structure is described in terms of both ledges and dislocations. When dislocations are involved, the candidates of the singular interfaces derive mainly from the principal O-lattice planes. The orientations of these planes are defined by Δg’s, which are measurable in diffraction patterns. Singularity with respect to the orientation relationship results from further eliminating defects, which is permitted by a special arrangement of Δg’s. The candidates of singular interface confined by the arrangement of discrete Δg’s are helpful for understanding the crystallographic morphology. One example from an Mg alloy is provided to show the association of the singular interfaces with Δg’s. The effect of the potential presence of a long-range strain and kinetic effects are briefly discussed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

1096-1105

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. W. Christian: The Theory of Transformation in Metals and Alloys, (Pergamon Press, Oxford, UK 2002).

Google Scholar

[2] C. M. Wayman: Introduction to the crystallography of martensitic transformations, (MacMillan, New York 1964).

Google Scholar

[3] M. -X. Zhang, and P. M. Kelly: Prog. Mater. Sci. Vol. 54 (2009), p.1101.

Google Scholar

[4] W. -Z. Zhang, and G. C. Weatherly: Progress in Materials Science Vol. 50 (2005), p.181.

Google Scholar

[5] A. P. Sutton, and R. W. Balluffi: Interfaces in crystalline materials, (Oxford University Press, Oxford 1995).

Google Scholar

[6] J. M. Howe: Interfaces in materials, (John Wiley and Sons, New York 1997).

Google Scholar

[7] D. A. Porter, and K. E. Easterling: Phase transformations in metals and alloys, (Chapman and Hall, New York 1992).

Google Scholar

[8] L. Vitos, A. V. Ruban, H. L. Skriver, and J. Kollar: Surface Science Vol. 441 (1998), p.186.

Google Scholar

[9] J. G. Che, and C. T. Chan: Physical Review B Vol. 57 (1998), p.1875.

Google Scholar

[10] S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris: Nature letter Vol. 436 (2005), p.91.

DOI: 10.1038/nature03832

Google Scholar

[11] W. A. Tiller: The Science of Crystallization: Microscopic Interfacial Phenomena, (Cambridge University Press, New York 1991).

Google Scholar

[12] T. Furuhara, J. M. Howe, and H. I. Aaronson: Acta Metallurgica et Materialia Vol. 39 (1991), p.2873.

DOI: 10.1016/0956-7151(91)90104-9

Google Scholar

[13] T. Furuhara, T. Ogawa, and T. Maki: Philosophical Magazine Letters Vol. 72 (1995), p.175.

Google Scholar

[14] W. Bollmann, and H. -U. Nissen: Acta Cryst. Vol. 24A (1968), p.546.

Google Scholar

[15] W. Bollmann: Crystal lattices, interfaces, matrices, (Bollmann, Geneva 1982).

Google Scholar

[16] A. P. Sutton, and V. Vitek: Philos. Trans. R. Soc. Lond. Vol. 309 A (1983), p.1.

Google Scholar

[17] W. Bollmann: Crystal defects and crystalline interfaces, (Springer, Berlin 1970).

Google Scholar

[18] W. -Z. Zhang, and G. R. Purdy: Phil. Mag. Vol. 68A (1993), p.279.

Google Scholar

[19] W. -Z. Zhang, and G. R. Purdy: Phil. Mag. Vol. 68A (1993), p.291.

Google Scholar

[20] F. Ye, W. -Z. Zhang, and D. Qiu: Acta Materialia Vol. 54 (2006), p.5377.

Google Scholar

[21] D. Qiu, and W. -Z. Zhang: Acta Materialia Vol. 55 (2007), p.6754.

Google Scholar

[22] F. Ye, and W. -Z. Zhang: Acta Materialia Vol. 54 (2006), p.871.

Google Scholar

[23] D. Qiu, and W. -Z. Zhang: Acta Materialia Vol. 56 (2008), p. (2003).

Google Scholar

[24] X. -F. Gu, and W. -Z. Zhang: Phil. Mag. Vol. 90 (2010), p.4503.

Google Scholar

[25] F. Ye, and W. Z. Zhang: Acta Materialia Vol. 50 (2002), p.2761.

Google Scholar

[26] M. Zhang, W. -Z. Zhang, and F. Ye: Metall. Mater. Trans. Vol. 36A (2005), p.1681.

Google Scholar

[27] W. -Z. Zhang, F. Ye, C. Zhang, Y. Qi, and H. S. Fang: Acta Materialia Vol. 48 (2000), p.2209.

Google Scholar

[28] W. -Z. Zhang: Scripta Materialia Vol. 37 (1997), p.187.

Google Scholar

[29] H. Grimmer: Scripta Metallurgica Vol. 8 (1974), p.1221.

Google Scholar

[30] Q. Liang, and W. T. Reynolds, Jr.: Metallurgical and Materials Transactions A (Physical Metallurgy and Materials Science) Vol. 29A (1998), p. (2059).

Google Scholar

[31] X. -P. Yang, and W. -Z. Zhang: Poster in iib2007 (2007).

Google Scholar

[32] M. Zhang, W. -Z. Zhang, G. -Z. Zhu, and Y. Kun: Trans. Nonferrous Met. Soc. China Vol. 17 (2007), p.1428.

Google Scholar

[33] W. -Z. Zhang, and J. Wu: Mater. Sci. and Eng. Vol. A438-440 (2006), p.118.

Google Scholar

[34] J. W. Cahn: Acta Metallurgica Vol. 8 (1960), p.554.

Google Scholar

[35] J. W. Cahn, and G. Kalonji. Symmetry in solid state transformation morphology., Solid to Solid Phase Transformations. Eds. Aaronson, H. I., D. E. Laughlin, R. F. Sekerka and C. M. Wayman. Warrendale, USA: TMS, 1981. 3.

Google Scholar

[36] M. G. Hall, H. I. Aaronson, and K. R. Kinsma: Surface Science Vol. 31 (1972), p.257.

Google Scholar

[37] P. M. Kelly, and M. X. Zhang: Material Forum Vol. 23 (1999), p.41.

Google Scholar