Atomic Scale Investigation of Cr Precipitation in Cu and Related Mechanical Properties.

Article Preview

Abstract:

The early stages of precipitation of Cr rich precipitates were investigated by Atom Probe Tomography (APT) in a Cu-1Cr-0.1Zr (wt.%). This way, quantitative data were obtained about their size, 3D shape, density, composition and volume fraction. Surprisingly, in the early stage of precipitation, nanoscaled precipitates exhibit various shapes (spherical, plates and ellipsoid) and contain a large amount of Cu (up to 50%), in contradiction with the equilibrium Cu-Cr phase diagram. APT data also show that some impurities (Fe) segregate along Cu/Cr interfaces. A precipitation sequence is proposed and the relationship between mechanical properties and microstructure is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

291-296

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Q. Liu, X. Zhang, Y. Ge, J. Wang, J. H. Cui, Meta. Mater. Trans. 37A (2006) 3233.

Google Scholar

[2] I. S. Batra, G. K Dey, U. D. Kulkarni, S. Banerjee. J. Nuc. Mater 299 (2001) 91-100.

Google Scholar

[3] U. Holzwarth, H. Stamm. J. Nuc. Mater. 279 (2000) 31-45.

Google Scholar

[4] D. J. Edwards, B. N. Singh, S. Tähtinen. J. Nuc. Mater. 367-370 (2007) 904-909.

Google Scholar

[5] K. Nagata and S. Nishikawa, Rept. Inst. Indust. Sci., Univ. of Tokyo, 24(4), Serial No. 153, 115-168 (Mar 1975).

Google Scholar

[6] R.W. Knights, P. Wilkes, Met. Trans. 4 (1973) 2389.

Google Scholar

[7] Y. Komen, J. Rezek, Met. Trans. 6A (1975) 549.

Google Scholar

[8] G.C. Weatherly, P. Humble, D. Borland, Acta Mater 27 (1979) 1815.

Google Scholar

[9] Z. Rdzawski, J. Stobrawa, Scripta Metall. 20 (1986) 341.

Google Scholar

[10] T. Fujii, H. Nakazawa, M. Kato, U. Dahmen, Acta Mater 48 (200) 1033.

Google Scholar

[11] M. Hatakeyama, T. Toyama, Y. Nagai, M. Hasekawa, M. Eldrup, B. N. Singh, Mater Trans. 49 (2008) 518.

Google Scholar

[12] M. Hatakeyama, T. Toyama, J. Yang, Y. Nagai, M. Hasekawa, T. Ohkubo, M. Eldrup, B. N. Singh, J. Nuc. Mat. 386-388 (2009) 852.

Google Scholar

[13] A.D. Ivanov, A.K. Nikolaev, G.M. Kalinin, M.E. Rodin, J. Nuc. Mater. 307-311 (2002) 673-676.

Google Scholar

[14] T.B. Massalski, Edited by ASM, Metals Park, Ohio, USA (1987) 819.

Google Scholar

[15] H. Fernee, J. Nairn, A. Atrens, J. Mater. Sci 36 (2001) 2721.

Google Scholar

[16] T.B. Massalski, Edited by ASM, Metals Park, Ohio, USA (1987) 982.

Google Scholar

[17] M. Apello, P. Fenici, Mater. Sci. Eng. A 102 (1988) 69.

Google Scholar

[18] M.K. Miller, G.D.W. Smith, Atom Probe Analysis: principles and applications to materials problems, MRS, Pittsburg, Pennsylvania, (1989).

Google Scholar

[19] E. Kozeschnik, Scripta Mater. 59 (2008) 1018.

Google Scholar

[20] D. N. Manh , M.Y. Lavrentiev, S. L. Dudarev, C. R. Physique 9 (2008) 379.

Google Scholar

[21] C. Aguilar, V. de P. Martinez, J.M. Palacios, S. Ordonez and O. Pavez, Scripta Mater. 57 (2007) 213-216.

Google Scholar