The β'-α' Interaction: a Study of early Stages of Phase Separation in a Fe-20%Cr-6%Al-0.5%Ti Alloy

Article Preview

Abstract:

The temporal evolution of the microstructure resulting from phase separation into Fe-rich (α), Cr-rich (α¢), and Fe(Ti,Al) (β¢) phases of a Fe-20Cr-6Al-0.5Ti alloy has been analyzed by thermoelectric power measurements (TEP). The early stages of decomposition and the evolution of the three-dimensional microstructure have been analyzed by atom probe tomography (APT). The roles of Cr, Al, and Ti during the decomposition process have been investigated in terms of solute partitioning between the phases. Analysis of proximity histograms revealed that significant Al and Ti partitioning occurs, which is consistent with theoretical calculations. The results indicate that as the α-α¢ phase separation proceeds, Al and Ti are rejected into the α phase, which causes the β¢ phase to nucleate on the surface of the α¢ phase.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

315-320

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. L. Klueh, D. S. Gelles, S. Jitsukawa and A. Kimura, G.R. Odette, B. van der Schaaf, M. Victoria: J. Nucl. Mater. Vol. 307-311 (2002), p.455.

DOI: 10.1016/s0022-3115(02)01082-6

Google Scholar

[2] C. Capdevila, Y. L. Chen, N. C. K. Lassen, A. R. Jones and H. K. D. H. Bhadeshia: Mat. Sci. Technol. Vol. 17 (2001), p.693.

Google Scholar

[3] M. K. Miller: Atom Probe Tomography (Kluwer Academic/Plenum Press, New York 2000).

Google Scholar

[4] F. G. Caballero, C. Capdevila, L. F. Alvarez and C. Garcia de Andres: Scr. Mater. Vol. 50 (2004), p.1061.

Google Scholar

[5] C. Capdevila, M. K. Miller, K. F. Russell, J. Chao and J. L. González-Carrasco: Mat. Sci. Eng. A Vol. 490 (2008), p.277.

Google Scholar

[6] M. K. Miller, J. M. Hyde, M. G. Hetherington, A. Cerezo, G. D. W. Smith and C. M. Elliott: Acta Metall. Mater. Vol. 43 (1995), p.3385.

Google Scholar

[7] O. C. Hellman, J. A. Vandenbroucke, J. Rüsing, D. Isheim and D. N. Seidman: Microscopy and Microanalysis Vol. 6 (2000), p.437.

Google Scholar

[8] M. G. Hetherington and M. K. Miller: J. De Physique Vol. 49 (1988), p.427.

Google Scholar

[9] I. M. Lifshitz and V. V. Slyozov: J. Phys. Chem. Solids Vol. 19 (1961), p.35.

Google Scholar

[10] C. Wagner: Zeitschrift Fur Elektrochemie Vol. 65 (1961), p.581.

Google Scholar

[11] M. K. Miller, M. G. Hetherington, J. R. Weertman and H. A. Calderon, in: Alloy Phase Stability and Design, edited by G. M. Stocks, D. P. Pope and A. F. Giamei MRS Publishing, Pittsburgh, PA (1991).

Google Scholar

[12] F. Danoix, P. Auger, D. Blavette: Surface Science Vol. 266 (1992), p.364.

Google Scholar

[13] F. Danoix, P. Auger, S. Chamberland, D. Blavette: Microsc. Microanal. Microstruct. Vol. 5 (1994), p.121.

Google Scholar