Analysis of Clustering Characteristics during early Stages of Cu Precipitation in bcc-Fe

Article Preview

Abstract:

Formation of coherent Cu precipitates in supersaturated ferrite (1.5 at.%Cu) at 500°C is simulated using the Monte Carlo method. Bond energies used in the atomistic simulation are calibrated on the mutual solubilities given on the Fe-rich and Cu-rich side of the Fe(bcc)-Cu(bcc) phase diagram. The spatial extension of the precipitate phase is defined on basis of a composition criterion of the nearest neighbor shells. Various definition conditions are examined in terms of resulting particle densities, mean radii and composition of the precipitates, as well as the composition profiles across the precipitate/matrix interface. The predictions of the simulations are compared with the experimental results from atom probe analysis as well as small angle neutron scattering.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

309-314

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.D. Doherty, in: Physical Metallurgy, edited by R.W. Cahn and P. Haasen, 4th Edition, vol. 2, chapter 15, North Holland (1996).

Google Scholar

[2] S. Pizzini, K,J. Roberts, W.J. Phythian, C.A. English and G.N. Greaves: Philos. Mag. Lett., vol. 61 (1990), p.223.

Google Scholar

[3] P.J. Othen, M.L. Jenkins and G.D.W. Smith: Philos. Mag. A, vol. 70 (1994), p.1.

Google Scholar

[4] E. Hornbogen, R.C. Glenn: Trans. Metall. Soc. AIME, vol. 218 (1960), p.1064.

Google Scholar

[5] F. Soisson and C. -C. Fu: Phys. Rev. B, vol. 76 (2007), 214102.

Google Scholar

[6] E. Vincent, C.S. Becquart, C. Pareige, P. Pareige and C. Domain: J. Nucl. Mater., vol. 373 (2008), p.387.

Google Scholar

[7] H. Lukas, S.G. Fries and B. Sundman, in: Computational Thermodynamics: The Calphad Method, Cambridge University Press (2007).

DOI: 10.1017/cbo9780511804137

Google Scholar

[8] M. A Turchanin, P.G. Agraval and I.V. Nikolaenko: J. Phase Equilib., vol. 24 (2003), p.307.

Google Scholar

[9] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller: J. Chem. Phys., vol. 21 (1953), p.1087.

DOI: 10.1063/1.1699114

Google Scholar

[10] J.L. Bocquet, G. Brebec and Y. Limoge in: Physical Metallurgy, edited by R.W. Cahn and P. Haasen, 4th Edition, vol. 1, chapter 7, North Holland (1996).

Google Scholar

[11] J. Friedberg, L. -E. Törndahl and M. Hillert: Jernkontorets Ann., vol. 153, p.263.

Google Scholar

[12] B. Jönsson: ISIJ Int., vol. 35 (1995), p.1415.

Google Scholar

[13] A. Cerezo and N. Davin: Surf. Interface Anal., vol. 39 (2007), p.184.

Google Scholar

[14] G. Kostorz, in: Neutron Scattering, ed. by G. Kostorz and H. Herman, vol. 15 of Treatise on Materials Science and Technology, Academic Press (1979).

DOI: 10.1016/b978-0-12-341815-9.50009-4

Google Scholar

[15] M. E Fine, J.Z. Liu and M.D. Asta: Mater. Sci. Eng. A, 463 (2007), p.271.

Google Scholar