Influence of High Magnetic Field on Ferrite Transformation in Fe-C Base Alloys

Article Preview

Abstract:

The characteristics and the mechanism of ferrite transformation in alloy steels which contain a carbide-forming element have attracted considerable attention for past decades. Since it is reported that the nucleation and growth of ferrite in Fe-C base alloys is accelerated by high magnetic field, the influence of a magnetic field of 12 Tesla on ferrite transformation was studied in a Fe-C- Mo alloy. Whereas a significant amount of expedition was observed at lower temperatures, the principal features of ferrite transformation, namely, a marked retardation of transformation at intermediate temperatures and premature cessation of transformation before it reaches the final equilibrium amount below the bay temperature were essentially retained. In contrast, the influence of magnetic field was much less at higher temperatures. These results are discussed in terms of the influence of magnetic field on the phase equilibrium and coupled-solute drag effects on the migration a/g phase boundary.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

362-371

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J-K. Choi, H. Ohtsuka, Y. Xu and W-Y. Choo, Scripta Mater., Vol. 43 (2000), p.221.

Google Scholar

[2] M. Enomoto, H. Guo, Y. Tazuke, Y.R. Abe and M. Shimotomai, Metall. Mater. Trans. A, Vol. 32A (2001), p.445.

Google Scholar

[3] M. Shimotomai, K. Maruta, K. Mine and M. Matsui, Acta Mater., Vol. 51 (2003), p.2921.

Google Scholar

[4] G.M. Ludtka, R.A. Jaramillo, R.A. Kisner, D.M. Nicholson, J.B. Wilgen, G. Mackiewicz-Ludka, P.N. Kalu, Scripta Mater., Vol. 51 (2004), p.171.

DOI: 10.1016/j.scriptamat.2004.03.029

Google Scholar

[5] Y. D. Zhang, C. S. He, X. Zhao, L. Zuo and C. Esling, J. Magn. Magn. Mater., Vol. 284 (2004), p.287.

Google Scholar

[6] S. Rivoirard, F. Gaucherand, O. Bouaziz, E. Pinto da Costa and E. Beaugnon, ISIJ International, Vol. 46 (2006), p.1274.

DOI: 10.2355/isijinternational.46.1274

Google Scholar

[7] G.H. Zhang, M. Enomoto, N. Hosokawa, M. Kagayama, Y. Adachi, J. Magn. Magn. Mater., Vol. 321 (2009), p.4010.

Google Scholar

[8] P.G. Boswell, K.R. Kinsman, G.R. Shiflet, and H.I. Aaronson, in: Mechanical Properties and Phase Transformations in Enginering Materials, eds. S.D. Antolvich, R.O. Ritchie and W.W. Gerberich, TMS-AIME, 1986, p.445.

Google Scholar

[9] H. Tsubakino and H.I. Aaronson, Metall. Trans. A, Vol. 18A (1987), p. (2047).

Google Scholar

[10] G.J. Shiflet and H.I. Aaronson, Metall. Trans. A, Vol. 21A (1990), p.1413.

Google Scholar

[11] W.T. Reynolds, F.Z. Li, C.K. Shui and H.I. Aaronson, Metall. Trans. A, Vol. 21A (1990), p.1433.

Google Scholar

[12] K.M. Wu, M. Kagayama and M. Enomoto, Mater. Sci. Eng., Vol. A343 (2003), p.143.

Google Scholar

[13] H.I. Aaronson, W.T. Reynolds, and G.R. Purdy, Metall. Mater. Trans. A, Vol. 35A (2004), p.1187.

Google Scholar

[14] H.I. Aaronson, W.T. Reynolds, and G.R. Purdy, Metall. Mater. Trans. A, Vol. 37A (2006), p.1731.

Google Scholar

[15] Handbook of Magnetism, ed. S. Chikazumi et al., Asakura Shoten, Tokyo, 1975, p.305.

Google Scholar

[16] H. Guo and M. Enomoto, Mater. Trans. JIM, Vol. 41 (2000), p.911.

Google Scholar

[17] J.R. Bradley, J.M. Rigsbee and H.I. Aaronson, Metall. Trans. A, Vol. 8A (1977), p.323.

Google Scholar

[18] K.M. Wu and M. Enomoto, Scripta Mater., Vol. 46(2002), p.569.

Google Scholar

[19] R.E. Hackenberg and G.J. Shiflet, Acta Mater., 51 (2003) , p.2131.

Google Scholar

[20] M. Hillert and B. Sundman, Acta Metall., Vol. 24 (1976), p.731.

Google Scholar

[21] J.S. Kirkaldy, B.A. Thomson and E.A. Baganis, in: Hardenability Concepts with Applications to Steel, eds. D.V. Doane and J.S. Kirkaldy, TMS-AIME, 1982, p.82.

Google Scholar

[22] I. Stark and G.D.W. Smith, Phase Transformations'87 (The Inst. Metals, 1988), p.475.

Google Scholar

[23] W.T. Reynolds, Jr., S.S. Brenner and H.I. Aaronson, Scripta Metall., Vol. 22(1988), p.1343.

Google Scholar

[24] E.S.K. Menon, W.T. Reynolds, Jr., A.G. Fox, Microscopy and Microanalysys'97, supp. 1 (Springer, New York, 1997).

Google Scholar

[25] H.A. Fletcher, A.J. Garratt-Reed, H.I. Aaronson, G.R. Purdy, W.T. Reynolds, Jr. and G.D.W. Smith, Scripta Mater., Vol. 45(2001), p.561.

DOI: 10.1016/s1359-6462(01)01060-0

Google Scholar

[26] E.S. Humphreys, H.A. Fletcher, J.D. Hutchins, A.J. Garratt-Reed, W.T. Reynolds, Jr., H.I. Aaronson, G.R. Purdy and G.D.W. Smith, Metall. Mater. Trans. A, Vol. 35A(2004), p.1223.

Google Scholar

[27] M. Enomoto, N. Maruyama, K.M. Wu and T. Tarui, Mater. Sci. Eng., Vol. A343(2003), p.151.

Google Scholar

[28] W.T. Reynolds, Jr. and K. Hono, in ref. 26.

Google Scholar

[29] G. Inden and C.R. Hutchinson, Austenite Formation and Decomposition, edited by E. Buddy Damm and M.J. Marwin, TMS-AIME, Warrendale, PA(2003), p.65.

Google Scholar

[30] M. Enomoto, C.L. White and H.I. Aaronson, Metall. Trans. A, Vol. 19A (1988), p.1807.

Google Scholar

[31] H. Guo and M. Enomoto, Metall. Mater. Trans. A, Vol. 38A (2007), p.1152.

Google Scholar

[32] M. Hillert and L. Höglund, Scripta Mater., Vol. 54 (2006), p.1259.

Google Scholar

[33] J.J. Wits, T.A. Kop, Y. van Leeuwen, J. Sietsma, S. Van der Zwaag, Mater. Sci. Eng. A, Vol. 283A (2000), p.234.

Google Scholar