Phase Transformations in Lutetium Borides at Heating in Vacuum

Article Preview

Abstract:

The LuB12 ® LuB4 ® LuB2 phase transformations on annealing in vacuum (T=(1400÷1800) K, p < 10-2 Pa) are investigated with use of the parent single crystals. SEM and X-ray researches of the corresponding lutetium boride single crystals were carried out before and after their annealing. It is shown that the LuB12 → LuB4 phase transformation takes place in surface layer and transition region spreads inwards the single crystal bulk with time. According to the assessed Lu-B phase diagram the LuB4 phase transformation into other individual phases is impossible, and at first it is shown that under corresponding conditions the LuB4 → LuB2 spontaneous phase transformation takes place both on the surface and in the LuB4 single crystal bulk.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

464-469

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.B. Massalski (Editor-in-Chief), Binary Alloy Phase Diagrams, Second Edition Plus Updates, ASM International, ASM CD-ROM, Ohio, USA (1996).

DOI: 10.1002/adma.19910031215

Google Scholar

[2] Information on http: /usa. autodesk. com.

Google Scholar

[3] Gmelin Handbook of Inorganic Chemistry. Compound with Boron: Sc, Y, La-Lu Rare Earth Elements, edited by H. Bergman et al., volume C11a, b, system number 39, Berlin, Springer-Verlag (1990).

Google Scholar

[4] Z. Fisk, A.S. Cooper, P.H. Schmidt and R.N. Castellano. Preparation and lattice parameters of the rare earth tetraborides. Materials Research Bulletin 7 (1972), issue 4, p.285 – 288, (1972).

DOI: 10.1016/0025-5408(72)90205-x

Google Scholar

[5] V. Baumer, N. Shitsevalova, Yu. Paderno, O. Shishkin, B. Grinyov. Structure study of some RE dodecaborides and high-boron compounds. In: Abstracts of 15th Int. Symposium on Boron, Borides and Related Materials, Hamburg, 21-26 August 2005, I-E-7, p.109.

Google Scholar

[6] G.V. Samsonov, L.N. Okhremchuk, I.A. Podchernjaeva, V.S. Fomenko and V.V. Odintsov. Thermoemission of transition metal dodecaborides. Izv. AN SSSR, ser. Neorg. Mater., 10 (1974), N 2, p.270 – 272, 1974 (in Russian).

DOI: 10.1002/chin.197419023

Google Scholar

[7] A. Czopnik, N. Shitsevalova, V. Pluzhnikov, A. Krivchikov, Yu. Paderno and Y. Onuki. Low-temperature thermal properties of yttrium and lutetium dodecaborides. J. Physics: Cond. Matter, 17 (2005), N 38, p.5971 – 5985.

DOI: 10.1088/0953-8984/17/38/003

Google Scholar

[8] B. Jäger, S. Paluch, W. Wolf, P. Herzig, O. J. Żogał, N. Shitsevalova and Y. Paderno. Characterization of the electronic properties of YB4 and YB6 using 11B NMR and first-principles calculations. J. Alloys&Comp., 383 (2004).

DOI: 10.1016/j.jallcom.2004.04.067

Google Scholar

[9] K.H.J. Bushow. Magnetic Properties of Borides. in: Boron and Refractory Borides, edited by V.I. Matkovich, Berlin, Heidelberg, New-York, Springer-Verlag (1977), p.494 – 515.

DOI: 10.1007/978-3-642-66620-9_26

Google Scholar

[10] G. Levchenko, A. Lyashchenko, A. Dukhnenko, V. Filippov and N. Shitsevalova. Preparation of earth rare diborides and their some properties. In: Book of Abstract E-MRS Fall Meeting, Warsaw University of Technology, Poland (2009), p.212.

Google Scholar

[11] D.R. Mason, J.S. Cook. Zone Leveling and Crystal Growth of Peritectic Compounds. J. Appl. Phys. 32 (1961), Issue 3, pp.475-477.

DOI: 10.1063/1.1736027

Google Scholar

[12] J. Etourneau,; J.P. Merkurio, and P. Hagenmuller, Compounds Based on Octahedral B6 Units: Hexaborides and Tetraborides. in: Boron and Refractory Borides. Ed. V.I. Matkovich. Berlin-Heidelberg N.Y.: Springer-Verlag, 1977. pp.116-138.

DOI: 10.1007/978-3-642-66620-9_10

Google Scholar