Reactive Diffusion between Ti and Cu-9.3Sn-0.3Ti Alloy at Solid-State Temperatures

Article Preview

Abstract:

The reactive diffusion between Ti and a bronze was experimentally examined using sandwich diffusion couples consisting of Ti and a Cu-9.3Sn-0.3Ti alloy. The diffusion couples were isothermally annealed at temperatures of T = 923-1023 K. During annealing, CuTi, (Cu, Sn)4Ti3 and (Sn, Cu)5Ti6 compounds are formed as layers at the interface in the diffusion couple. The overall growth of the compound layers is controlled by volume diffusion at T = 1023 K but by boundary and volume diffusion at T = 923-973 K. Hence, the interface reaction is not the bottleneck for the growth of the compound layers under the present experimental conditions.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

470-474

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.R. Kaufmann and J.J. Pickett: Bull. Am. Phys. Soc. Vol. 15 (1970), p.838.

Google Scholar

[2] M. Suenaga and W.B. Sampson: Appl. Phys. Lett. Vol. 18 (1971), p.584.

Google Scholar

[3] K. Tachikawa, Y. Yoshida and L. Rinderer: J. Mater. Sci. Vl. 7 (1972), p.1154.

Google Scholar

[4] M. Suenaga and W.B. Sampson: Appl. Phys. Lett. Vol. 20 (1972), p.443.

Google Scholar

[5] H.H. Farrell, G.H. Gilmer and M. Suenaga: J. Appl. Phys. Vol. 45 (1974), p.4025.

Google Scholar

[6] H.H. Farrell, G.H. Gilmer and M. Suenaga: Thin Solid Films Vol. 25 (1975), p.253.

Google Scholar

[7] H. Dew-Hughes, T.S. Luhman and M. Suenaga: Nucl. Tech. Vol. 29 (1976), p.268.

Google Scholar

[8] S. Murase, Y. Koike and H. Shiraki: J. Appl. Phys. Vol. 49 (1978), p.6020.

Google Scholar

[9] K. Kwasnitza, A.V. Narlikar, H.U. Nissen and D. Salathé: Cryogenics (1980), p.715.

Google Scholar

[10] P. Upadhyay, S.B. Samanta and A.V. Narlikar: Mat. Res. Bull. Vol. 16 (1981), p.741.

Google Scholar

[11] B.V. Reddi, V. Raghavan, S. Ray and A.V. Narlikar: J. Mater. Sci. Vol. 18 (1983), p.1165.

Google Scholar

[12] C.C. Cheng and J.D. Verhoeven: J. Less-Com. Met. Vol. 139 (1988), p.15.

Google Scholar

[13] K. Osamura, S. Ochiai, S. Kondo, M. Namatame and M. Nosaki: J. Mater. Sci. Vol. 21 (1986), p.1509.

Google Scholar

[14] Y. Muranishi and M. Kajihara: Mater. Sci. Eng. A Vol. 404 (2005), p.33.

Google Scholar

[15] T. Hayase and M. Kajihara: Mater. Sci. Eng. A Vol. 433 (2006), p.83.

Google Scholar

[16] K. Mikami and M. Kajihara: J. Mater. Sci. Vol. 42 (2007), p.8178.

Google Scholar

[17] Y. Tejima, S. Nakamura and M. Kajihara: J. Mater. Sci. Vol. 45 (2010), p.919.

Google Scholar

[18] T. Takenaka, S. Kano, M. Kajihara, N. Kurokawa and K. Sakamoto: Mater. Sci. Eng. A V l. 396 (2005), p.115.

Google Scholar