Kinetic of Formation of Ni and Pd Silicides: Determination of Interfacial Mobility and Interdiffusion Coefficient by In Situ Techniques

Article Preview

Abstract:

The formation of metal (Ni and Pd) silicide thin films on a Si wafer is analyzed using differential scanning calorimetry (DSC) and isothermal X ray diffraction measurements. The sensitivity of DSC is remarkable even in this experimental Ni/Si and Pd/Si(001) and allows to show two steps of growth for a phase formation (lateral and normal growth). This technique is shown being of main interest for characterization of silicide formation during microelectronic industrial processes. Combining X-ray diffraction measurements and DSC measurements, the interface mobilities and the effective diffusion coefficient characterizing Ni2Si and Pd2Si growth are measured. These quantities as well as the interface mobilility for lateral growth have been determined by using a model taken into account the nucleation and lateral growth as well as a normal growth controlled by diffusion and interface reaction.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

640-645

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B-Y. Tsaur, and C. H. Anderson, Jr. Appl. phys Lett. 47 (5), 525 (1985).

Google Scholar

[2] F. Nemouchi, D. Mangelinck, C. Bergman, and P. Gas , Appl. phys Lett. 86, 041903-1 (2005).

Google Scholar

[3] K. R. Coffey, L. A. Clevenger, K. Barmak, et al, Appl. phys Lett. 55 (9), 852 (1989).

Google Scholar

[4] E. Ma, L. A. Clevenger and C. V. Thompson, J. Mater. Res., 7 (6) 1350 (1992).

Google Scholar

[5] K. Hoummada, A. Portavoce, C. Perrin, D. Mangelinck, and C. Bergman. Appl. Phys Lett. 92, 133109 (2008).

DOI: 10.1063/1.2905293

Google Scholar

[6] L. A. Clevenger, and C. V. Thompson, J. Appl. Phys. 67, 1325 (1990).

Google Scholar

[7] C. Michaelsen, K. Barmak, and T.P. Weihs, J. Phys D: Appl. Phys. 30, 3167 (1997).

Google Scholar

[8] E. Emeric, C. Bergman, G. Clugnet, P. Gas, and M. Audier, Phil. Mag. Letter 78, 77 (1998).

Google Scholar

[9] K. Maex, Physics world 8, 35 (1995).

Google Scholar

[10] F. M. d'Heurle, and P. Gas, J. Mat. Res. 1, 205 (1986).

Google Scholar

[11] P. Gas, and F. M. d'Heurle, in Landolt-Börnstein - Numerical Data and Functional Relationships in Science and Technology, New Series - Vol. III 33A:, Ed: D.L. Beke - (1998) Springer-Verlag.

Google Scholar

[12] F. R. de Boer, R. Boom, W.C.M. Mattens, A. R. Miedema, and A. K. Niessen, in Cohesion in Metals F. R. de Boer and D. G. Pettifor (eds. ), North-Holland, Amsterdam, (1988).

Google Scholar

[13] M. Wittmer and K. N. Tu, Phys. Rev. B 27, 27 (1983).

Google Scholar

[14] R. W. Bower, D. Sigurd, and R. E. Scott, Solid-State Electron. 16, 1461(1973).

Google Scholar

[15] K. Hoummada, E. Cadel, D. Mangelinck, et al, Appl. Phys. Lett. 89, 18 (2006).

Google Scholar

[16] W. A. Johnson et R.F. Mehl, Trans. AIME 135, 1939 (416.

Google Scholar

[17] J.W. Cahn, Acta Metall. 4, (1956) 499.

Google Scholar

[18] B. E. Deal, and A. Groves, J. Appl. Phys. 36, 3770 (1965).

Google Scholar

[19] J. Philibert, Materials Science Forum 155-156, 15 (1994).

Google Scholar

[20] H. Mehrer Diffusion in solids, Springer: Berlin, Heidelberg, (2007).

Google Scholar