Multiscale Modelling of the Ageing Kinetics of a 2D Deposit

Article Preview

Abstract:

We compare three models of 2D precipitation kinetics that give access to different time-space scales. Kinetic Monte Carlo simulations (KMC), cluster dynamics (CD) and nucleation-growth-coalescence model (NGCM), based on a same atomic model, lead to an excellent agreement as long as the interfacial free energy is evaluated accurately and the interaction between diffusion fields is taken into account in the CD. The NGCM model noticeably improves the previous approaches of the same kind by using a constrained-equilibrium hypothesis to describe the solid solution. Moreover, in the coalescence regime, we show that CD leads to cluster distributions that are wider and more symmetric than the LSW distribution due to the probabilistic feature of the growth law of a cluster, that makes it differ from the purely deterministic NGCM approach.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

664-669

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Soisson and C.C. Fu: Phys. Rev. B Vol. 76 (2007), p.214102.

Google Scholar

[2] D. Gendt: PhD thesis, Orsay (2001).

Google Scholar

[3] L. Laé: PhD thesis, INPG Grenoble (2004).

Google Scholar

[4] E. Clouet, in: Fundamentals of modeling for metals processing, edited by D.U. Furrer and S.L. Semiatin, ASM Handbook, Vol. 22A (2009), p.203.

Google Scholar

[5] T. Jourdan, F. Soisson, E. Clouet and A. Barbu: Acta Materialia Vol. 58 (2010), p.3400.

DOI: 10.1016/j.actamat.2010.02.014

Google Scholar

[6] J.S. Langer and A. Schwartz: Phys. Rev. A Vol. 21 (1980), p.948.

Google Scholar

[7] R. Wagner and R. Kampmann, in: Phase Transformations in Materials, edited by R.W. Cahn, P. Haasen, E.J. Kram, Wiley-VCH, Weinheim, Vol. 5 (1991) p.215.

Google Scholar

[8] P. Maugis and M. Gouné: Acta Mater. Vol. 53 (2005), p.3359.

Google Scholar

[9] F. Berthier, B. Legrand, J. Creuze and R. Tétot: J. Electroanal. Chem. Vol. 562 (2004), p.127.

Google Scholar

[10] D. Kashiev, in: Nucleation: basic theory with applications, Butterworth Heinemann, Oxford (2000).

Google Scholar

[11] J. Lépinoux: Phil. Mag. Vol. 86 (2006), p.5053.

Google Scholar

[12] A. Perini, G. Jaccuci and G. Martin: Phys. Rev. B Vol. 29 (1984), p.2689.

Google Scholar

[13] F. Berthier, E. Maras, I. Braems and B. Legrand: this volume.

Google Scholar

[14] A.J. Ardell: Phys. Rev. B Vol. 41 (1990), p.2554.

Google Scholar

[15] I.M. Lifshitz and V.V. Slyozov: J. Phys. Chem. Solids Vol. 19 (1961), p.35.

Google Scholar

[16] C. Wagner: Z. Electrochem Vol. 65 (1961), p.581.

Google Scholar

[17] A. Baldan: J. Mater. Sci. Vol. 37 (2002), p.2171.

Google Scholar

[18] O.N. Senkov: Scripta Mater. Vol. 59 (2008), p.171.

Google Scholar

[19] F. Berthier, I. Braems, E. Maras, J. Creuze and B. Legrand: Acta Mater. Vol. 58 (2010), p.2387.

DOI: 10.1016/j.actamat.2009.12.025

Google Scholar