Modelling Age Hardening CuCr1Zr Electrode Alloy Softening during Resistance Spot Welding

Article Preview

Abstract:

High strength zinc-coated steels are used for automotive applications when high corrosion resistance and weight reduction are required. Resistance spot welding is the main method to assembly auto body. Steel sheets are held together under pressure exerted by copper alloy electrodes which concentrate welding current and clamp the sheets together. But welding of high strength coated steels reduces the electrode life. Even if electrode deterioration is a well-known problem, the understanding and modelling of the complex deterioration modes at different regions of the electrode is still limited. Developing a comprehensive thermo-electrical-metallurgical-mechanical model that describes the sequential deterioration is thus lacking. This work is a preliminary study which specifically addresses microstructural evolution modelling in age hardened CuCr1Zr electrode alloy. Evolution of precipitation is simulated using two models: a Johnson-Mehl-Avrami-Kologoromov model and the Myhr and Grong model. In both cases a calibration procedure based on hardness data was involved. Short isothermal heat treatments were used to develop a ‘master curve’ which captures the precipitate evolution. Preliminary results about the comparison of the two models are presented.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

857-862

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.A. Khan, L. Xu, Y.J. Chao and K. Broach, Num. Heat Transfer Part A, 37 (2000) p.425.

Google Scholar

[2] H. Eisazadeh, M. Hamedi, A. Halvaee, Mat. and Design, 31 (2010) p.149.

Google Scholar

[3] T. Dupuy, in: La dégradation des électrodes lors du soudage par points de tôles d'acier zinguées, PhD. dissertation, Ecole des Mines de Paris, France (1998).

Google Scholar

[4] S. S Babu, Michael L. Santella and W. Peterson, in: FY 2004 Progress Report for Automotive Lightweighting Materials, chapter G, U.S. Dpt. of Energy (2004) p.229.

Google Scholar

[5] P. Rogeon, P. Carré, J. Costa, G. Sibilia and G. Saindrenan., J. of Mat. Process. Techn., 195, 1-3 (2008) p.117.

Google Scholar

[6] D. Carron, P. Rogeon, I. Zavala, O. Asserin, A. Fontes, G. Saindrenan and O. Gourbesville, in : Proceedings Matériaux 2006, Comm. 0453, Fédération Française des Matériaux, France (2006).

Google Scholar

[7] O. R. Myhr and Ø. Grong, Acta metall. mater., 39, 11 (1991) p.2693 and ibid. p.2703.

Google Scholar

[8] D.J. Edwards, B.N. Singh and S. Tähtinen., J. of Nucl. Mat., 367–370 (2007) p.904.

Google Scholar

[9] Ø. Frigaard, Ø. Grong, and O.T. Midling, Met. and Mater Trans. A, 32A (2001) p.1189.

Google Scholar

[10] H. R. Shercliff, M. J. Russell, A. Taylor and T. L. Dickerson, Méch. & Ind., 6 (2005) p.25.

Google Scholar

[11] J. D. Robson and A. Sullivan, Mat. Sci. and Techn., 22, 2 (2006) p.146.

Google Scholar

[12] E. Sarrazin, in: Modélisation du soudage d'alliages d'aluminium, PhD. dissertation, Ecole Polytechnique, France (1995).

Google Scholar

[13] W.F. Gale and T.C. Totemeier in: Smithells Metals Reference Book, 8th Edition, Elsevier Butterworth-Heinemann, Oxford, UK (2003).

Google Scholar

[14] D. J. Chakrabarti and D.E. Laughlin, Bull. Alloy. Ph. Diag., 5, 1 (1984) p.59.

Google Scholar

[15] C. Aguilar, V. de P. Martinez, J. Palacios, S. Ordonez and O. Pavez, Scr. Mater., 57 (2007) p.213.

Google Scholar