Microstructure Evolution and Mechanical Properties of the Ni/Ni Soldered Joints

Article Preview

Abstract:

The paper presents the results of studies on the microstructure, chemical composition and mechanical properties of the Ni/SnAuCu/Ni interconnections obtained due to the conventional soldering at 300 °C for different times and subsequent aging at 150 °C. The EDX microanalysis allowed to detect at the Ni/solder interface the (Ni,Cu,Au)3Sn4 phase which transformed to (Cu,Ni,Au)6Sn5 after longer time of soldering. In the central part of the interconnection AuSn4 brittle phase was present. This phase was responsible for the significant decrease of the shear strength in the joints subjected to aging at 150 °C for 1000h, 1500 hours. The fracture behavior of such joints appeared to be caused partly by the coalescence of the microvoids in the bulk solder, cleavage of η-phase grains and decohesion at the interface.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

863-868

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.W. Gayle, et al.: JOM Vol. 53 (2001), pp.17-21.

Google Scholar

[2] Y Yamada, et al.: R&D Review of Toyota, CRDL Vol. 41 (2005), p.43.

Google Scholar

[3] T. Shimizu, et al.: J. Electron. Mater. Vol. 28 (1999), pp.1172-1175.

Google Scholar

[4] M. Rettenmayer, et al.: J. Electron. Mater. Vol. 31 (2002), pp.278-285.

Google Scholar

[5] Jong Hoon Kim, et al.: Mat. Trans. Vol. 43 (2002), pp.951-960.

Google Scholar

[6] A. Wierzbicka-Miernik, G. Garzel, L.A. Zabdyr: Journal of Phase Equilibria and Diffusion Vol. 31 (2010), pp.34-36.

DOI: 10.1007/s11669-009-9612-0

Google Scholar

[7] J. Wojewoda., P. Zięba: Inż. Mat. Vol. XXVIII (2007), pp.496-498.

Google Scholar

[8] O. B. Karlsen, A. Kjekshus, E. Rost: The Ternary System Au-Cu-Sn. Acta Chem. Scand. 46 (1992), pp.147-156.

DOI: 10.3891/acta.chem.scand.46-0147

Google Scholar

[9] L. Zabdyr, A. Wierzbicka-Miernik, G. Garzeł: Lutowia bezołowiowe na bazie Au-Cu-Sn (Soldering lead-free of base Au-Cu-Sn). Patent application P-388171, Institute of Metallurgy and Materials Science PAS, Kraków (2009).

DOI: 10.1007/s11669-009-9612-0

Google Scholar

[10] M. Nowottnick, W. Scheel, K. Wittke, U. Pape: Microelectronics Reliability Vol. 40 (2000), pp.1135-1146.

DOI: 10.1016/s0026-2714(00)00040-8

Google Scholar

[11] M. Amagai at all: Microelectronics reliability Vol. 42 (2002), pp.951-966.

Google Scholar

[12] K. S. Kim, S. H. Huh, K. Suganuma: Journal of Alloys and Compounds Vol. 352 (2003), pp.226-236.

Google Scholar