Precipitation Kinetics Study of Al – Zr – X(Sc or Ti) Alloys by Phase Field Simulations and Atom Probe Tomography

Article Preview

Abstract:

Phase field modeling of precipitation kinetics in Al – Zr – Sc and Al – Zr – Ti ternary alloys has been performed. The free energy was evaluated using the Thermo-calc data. Our simulations showed that L12 precipitates in Al – Zr – Sc alloy consists of Sc rich zone of in core and Zirconium rich zone at the precipitate / matrix interface. In Al – Zr – Ti system, Al3 (Zr-Ti) precipitates are homogeneous and no segregation is observed. Phase-field simulation results are compared with 3D APT data.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

869-874

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Keith E. Knipling, David C. Dunand, and David N. Seidman. Criteria for developing castable, creep-resistant aluminum-based alloys a review. Zeitschrift für Metallkunde, 97(3):246–265, 2006.

DOI: 10.3139/146.101249

Google Scholar

[2] Emmanuel Clouet, Ludovic Lae, Thierry Epicier, Williams Lefebvre, Maylise Nastar, and Alexis Deschamps. Complex precipitation pathways in multicomponent alloys. Nat Mater, 5(6):482–488, June 2006.

DOI: 10.1038/nmat1652

Google Scholar

[3] Keith E. Knipling. Development of a nanoscale precipitation-strengthened creep-resistant aluminum alloy containing trialuminide precipitates. 2006.

Google Scholar

[4] V. V. Zakharov. Effect of scandium on the structure and properties of aluminum alloys. Metal Science and Heat Treatment, 45(7):246–253, July 2003.

Google Scholar

[5] P. MÃlek, M. Janeoek, B. Smola, P. BartuÅ ka, and J. PleÅ til. Structure and properties of rapidly solidified al-zr-ti alloys. Journal of Materials Science, 35(10):2625–2633, may 2000.

Google Scholar

[6] B. Forbord, W. Lefebvre, F. Danoix, H. Hallem, and K. Marthinsen. Three dimensional atom probe investigation on the formation of al3(sc,zr)-dispersoids in aluminium alloys. Scripta Materialia, 51(4):333 – 337, 2004.

DOI: 10.1016/j.scriptamat.2004.03.033

Google Scholar

[7] Christian B. Fuller. Temporal evolution of the microstructures of al(sc,zr) alloys and their influences on mechanical properties. 2003.

Google Scholar

[8] Long-Qing Chen. Phase-field models for microstructure evolution. Annual Review of Materials Research, 32(1):113–140, 2002.

Google Scholar

[9] V. Vaithyanathan and L. Q. Chen. Coarsening of ordered intermetallic precipitates with coherency stress. Acta Materialia, 50(16):4061 – 4073, 2002.

DOI: 10.1016/s1359-6454(02)00204-5

Google Scholar

[10] L.Q. Chen and Jie Shen. Applications of semi-implicit fourier-spectral method to phase field equations. Computer Physics Communications, 108(2-3):147 – 158, 1998.

DOI: 10.1016/s0010-4655(97)00115-x

Google Scholar

[11] Y. Harada and D. C. Dunand. Thermal expansion of al3sc and al3(sc0.75x0.25). Scripta Materialia, 48(3):219 – 222, 2003.

DOI: 10.1016/s1359-6462(02)00428-1

Google Scholar

[12] Thermo-calc® . http://www.thermocalc.com/software.htm.

Google Scholar

[13] Thermotech Database for aluminium alloys 6.

Google Scholar

[14] B. Srinivasa Rao W. Lefebvre, K. Hoummada. Al3zr and al3(zr,sc) dispersoids and their interaction with solute elements investigated by atom probe tomography and scanning transmission electron microscopy.pdf. Proceeding ICAA12, 2010.

Google Scholar

[15] K.E. Knipling, D.C. Dunand, and D.N. Seidman. Atom probe tomographic studies of precipitation in al-0.1zr-0.1ti (at.%) alloys. Microscopy and Microanalysis, 13(06):503–516, 2007.

DOI: 10.1017/s1431927607070882

Google Scholar