Decarburization of 0.21C-1.3Mn-0.2Si Steel for Hot Stamping at Various Heating Temperatures

Article Preview

Abstract:

In order to examine the decarburization behavior in the hot stamping (HS) method, the dependence of the microstructure evolution on the annealing temperature was experimentally studied using a Fe-0.21 mass% C-1.3 mass% Mn-0.2 mass% Si steel. The steel was isothermally annealed in the temperature range of T = 773-1173 K for various times of t = 100-12800 s in an ambient atmosphere. Here, the steel possesses the ferrite (α) + cementite (θ) two-phase microstructure at T = 773-923 K, the α + austenite (γ) two-phase microstructure at T = 1013-1073 K, and the γ single-phase microstructure at T = 1093-1173 K. During annealing at T = 1013-1073 K for t = 1600 s, however, the α layer with a uniform thickness is formed at the surface of the steel due to decarburization and gradually grows into the inside. Such formation of the a layer was not clearly observed at T 973 K and T 1093 K. Thus, the formation of the α layer hardly occurs under the HS annealing conditions. At T = 1033 K, the thickness of the α layer is mostly proportional to the square root of the annealing time. Such a relationship is called the parabolic relationship. Furthermore, the grain size of the α layer monotonically increases with increasing annealing time. Hence, the parabolic relationship guarantees that the growth of the α layer is controlled by volume diffusion.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

887-892

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Nakajima: CAMP-ISIJ Vol. 17 (2004), p.980.

Google Scholar

[2] S. Owaku: Netsusyori Vol. 36 (1996), p.388.

Google Scholar

[3] W. A. Pennington: Trans. Am. Soc. Met. Vol. 37 (1946), p.48.

Google Scholar

[4] I. Naito: Tetsu-to-Hagané Vol. 22 (1936), p.17.

Google Scholar

[5] H. Oikawa, J. F. Remy and A. G. Guy: Trans. Am. Soc. Met. Vol. 61 (1968), p.110.

Google Scholar

[6] A. Phillion, H. S. Zurob, C. R. Hutchinson, H. Guo, D. V. Malakhov, J. Nakano and G. R. Purdy: Metall. Trans. Vol. 35A (2004), p.1237.

Google Scholar

[7] A. Beche, H. S. Zurob and C. R. Hutchinson: Metall. Trans. Vol. 38A (2007), p.2950.

Google Scholar

[8] H. Z. Zurob, C. R. Hutchinson, A. Beche, G. R. Purdy and Y. Brechet: Acta Mater. Vol. 56 (2008), p.2203.

Google Scholar

[9] H. Z. Zurob, C. R. Hutchinson, Y. Brechet, H. Seyedrezai and G. R. Purdy: Acta Mater. Vol. 57 (2009), p.2781.

Google Scholar

[10] R. M. Hudson: Trans. TMS-AIME Vol. 227 (1963), p.695.

Google Scholar

[11] N. Birks and W. Jackson: J. Iron Steel Inst. Vol. 208 (1970), p.81.

Google Scholar

[12] K. Tonomura and Y. Higo: Nisshin Steel Tech. Rep. Vol. 27 (1972), p.32.

Google Scholar

[13] A. R. Marder, S. M. Perpetua, J. A. Kowalik and E. T. Stephenson: Metall. Trans. Vol. 16A (1985), p.1160.

Google Scholar

[14] M. Nomura, H. Morimoto and M. Toyama: ISIJ Int. Vol. 40 (2000), p.619.

Google Scholar

[15] W. Murata and J. Tominaga: Tetsu-to-Hagané Vol. 66 (1980), p.678.

Google Scholar

[16] Y. L. Corcoran, A. H. King, N de Lanerolle and B. Kim: J. Electron. Mater. Vol. 19 (1990), p.1177.

Google Scholar

[17] A. Furuto and M. Kajihara: Mater. Trans. Vol. 49 (2008), p.294.

Google Scholar

[18] P. A. Beck, J. C. Kramar, L. J. Demar and M. L. Holzworth: Trans. TMS- AIME Vol. 175 (1948), p.372.

Google Scholar