Electroluminescence of Naturally Oxidized Polypyrrole

Article Preview

Abstract:

Soluble polypyrrole was obtained by naturally oxidizing pyrrole in air at room temperature for one to four years. Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and ultraviolet-visible absorption spectroscopy were employed to characterize the chemical structures of the naturally oxidized polypyrrole. The electroluminescence from the naturally oxidized polypyrrole was recorded. The electroluminescence of the naturally oxidized polypyrrole was broad with its peak located at about 480 nm. Prototyped thin-film display panels were developed using the naturally oxidized polypyrrole as active medium.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 181-182)

Pages:

245-250

Citation:

Online since:

November 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. H. Burroughes, D. D. C. Bradley, A. R. Brown et al.: Nature Vol. 347 (1990), p.539.

Google Scholar

[2] R. H. Friend, R. W. Gymer, A. B. Holmes et al.: Nature Vol. 387 (1999), p.121.

Google Scholar

[3] Y. M. Huang, W. Ge, J. W. Y. Lam et al.: Appl. Phys. Lett. Vol. 75 (1999), p.4094.

Google Scholar

[4] M.Y. M. Huang, C. K. Law, W. Ge et al: J. Lumin. Vol. 99 (2002), p.161.

Google Scholar

[5] Y. M. Huang and B. G. Zhai: Mol. Cryst. Liq. Cryst. Vol. 511 (2009), p.272.

Google Scholar

[6] Y. M. Huang, F. Zhou and K. Xu: Appl. Phys. Lett. Vol. 88 (2006), p.131112.

Google Scholar

[7] Y. M. Huang and B. -G. Zhai: Key Eng. Mater. Vol. 428-429 (2010), p.182.

Google Scholar

[8] L. Akcelrud: Prog. Polym. Sci. Vol. 28 (2003), p.875.

Google Scholar

[9] L. S. Hung and C.H. Chen: Mater. Sci. Eng. R Vol. 39 (2002), p.143.

Google Scholar

[10] T. V. Vernitskaya and O. N. Efimov, Russian Chem. Rev. Vol. 66 (1997), p.443.

Google Scholar

[11] Y. M. Huang, F. F. Zhou, B. G. Zhai et al.: Solid State Ion. Vol. 179 (2008), p.1194.

Google Scholar

[12] B. -G. Zhai, Q. -L. Ma and Y. M. Huang: Mater. Sci. Forum Vol. 663-665 (2011), p.658.

Google Scholar

[13] Y. M. Huang, B. -G. Zhai and Q. -L. Ma: Mater. Sci. Forum Vol. 663-665 (2011), p.300.

Google Scholar

[14] Y. M. Huang and B. G. Zhai: Mol. Cryst. Liq. Cryst. Vol. 510 (2009), p.214.

Google Scholar

[15] Y. M. Huang and B. G. Zhai: Mol. Cryst. Liq. Cryst. Vol. 511 (2009), p.272.

Google Scholar

[16] Y. M. Huang, B. G. Zhai and F. F. Zhou: Mol. Cryst. Liq. Cryst. Vol. 510 (2009), p.34.

Google Scholar

[17] Y. M. Huang, Y. Song, C. Huang et al.: J. Lumin. Vol. 114 (2005), p.241.

Google Scholar

[18] Y. M. Huang and B. -G. Zhai: Key Eng. Mater. Vol. 428-429 (2010), p.212.

Google Scholar

[19] Q. -L. Ma, R. Xiong, Y. M. Huang: J. Lumin. Vol. 131 (2011), p. (2053).

Google Scholar

[20] B. -G. Zhai and Y. M. Huang: Key Eng. Mater. Vol. 428-429 (2010), p.288.

Google Scholar