Application of EIS to Study the Corrosion Resistance of Passivated NiTi Shape Memory Alloy in Simulated Body Fluid

Article Preview

Abstract:

The NiTi shape memory alloy passivated for 90 min by autoclaving has been studied towards corrosion performance in the Tyrode’s simulated body fluid using open circuit potential and EIS measurements. The surface morphology and thickness of the oxide layer was determined by XRR. The HREM was used to observe the cross-section of the thin foil and to confirm the amorphous state of the TiO2 layer and its thickness. Electrochemical measurements revealed a good corrosion resistance at the beginning of long-term (20 days) immersion. It was found that with the increase of immersion time, the corrosion resistance of the surface deteriorated after nearly 1 day of immersion due to occurence of pitting corrosion. The EIS method was used to detailed study on the electrolyte | passive layer interfacial properties. Equivalent electrical circuit for the pitting corrosion on the passivated NiTi alloy has been applied.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 183)

Pages:

57-64

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Shape memory and superelastic alloys: Applications and technologies, (eds. ) K. Yamauchi, I. Ohkata, K. Tsuchiya, and S. Miyazaki, Woodhead Publishing Ltd., Cambridge, (2011).

DOI: 10.1533/9780857092625

Google Scholar

[2] N.B. Morgan: Mater. Sci. Eng., A, Vol. 378 (2004) p.16.

Google Scholar

[3] J. Khalil-Allafi, B. Amin-Ahmadi, M. Zare: Mater. Sci. Eng., C, Vol. 30 (2010), p.1112.

Google Scholar

[4] C. Trepanier, R. Venugopalan, A.R. Pelton: Corrosion resistance and biocompatibility of passivated NiTi, in: Shape memory implants, L'H. Yahia (ed. ), California (2000).

DOI: 10.1007/978-3-642-59768-8_3

Google Scholar

[5] S.A. Shabalovskaya: Bio-Med. Mater. Eng., Vol. 12 (2002), p.69.

Google Scholar

[6] D. Sstarosvetsky, I. Gotman: Biomater., Vol. 22 (2001), p.1853.

Google Scholar

[7] A. Michiardi, C. Aparicio, J.A. Planell, F.J. Gil: Surf. Coat. Technol., Vol. 201 (2007), p.6484.

Google Scholar

[8] J. Lelątko, T. Goryczka, T. Wierzchoń, M. Ossowski, B. Łosiewicz, E. Rówiński, H. Morawiec: Solid State Phenom. Vol. 163 (2010), p.127.

DOI: 10.4028/www.scientific.net/ssp.163.127

Google Scholar

[9] D. Yang, C. Liu, X. Liu, M. Qi, G. Lin: Cur. Appl. Phys., Vol. 5 (2005), p.417.

Google Scholar

[10] J.A. Ruiz, I. Rosales, J.G. Gonzalez-Rodriguez, J. Uruchurtu: Int. J. Electrochem. Sci., Vol. 5 (2010), p.593.

Google Scholar

[11] Impedance spectroscopy: theory, experiment, and applications, Evgenij Barsoukov, J. Ross Macdonald (Edts. ), Wiley-Interscience, A John Wiley & Sons. Inc., Hoboken, New Jersey, 2005, USA.

DOI: 10.1002/jrs.1558

Google Scholar

[12] A. Lasia, Electrochemical impedance spectroscopy and its applications, in: Modern aspects of electrochemistry, Vol. 32, B.E. Conway, J. Bockris, and E.E. White (Edts. ), Kluwer Academic/Plenum Publishers, New York, (1999).

Google Scholar

[13] AUTOLAB, Electrochemical instruments, Description of the instrument, Eco Chemie B.V., Kanaalweg, Utrecht, The Netherlands (1998).

Google Scholar

[14] User manual for frequency response analysis (FRA) for Windows version 4. 9, Eco Chemie B.V., Kanaalweg, Utrecht, The Netherlands, (2001).

Google Scholar

[15] B.A. Boukamp: Solid State Ionics, Vol. 20 (1986), p.31; Vol. 18-19 (1986), p.136.

Google Scholar

[16] ASTM F2129-08: Standard test method for conducting cyclic potentiodynamic polarization measurements to determine the corrosion susceptibility of small implant devices.

DOI: 10.1520/f2129

Google Scholar

[17] N. Figueira, T.M. Silva, M.J. Carmezim, J.C.S. Fernandes: Electrochim. Acta, Vol. 54 (2009), p.921.

Google Scholar