The Effect of Low-Temperature Glow Discharge Nitriding of Duplex Stainless Steel on Absorption and Desorption of Hydrogen

Article Preview

Abstract:

The effect of the nitrided layers produced on ferritic-austenitic stainless steel to hydrogen absorption and desorption was studied. The layers were formed during low-temperature glow discharge nitriding process. The microstructure of steel after nitriding and cathodic hydrogen charging was investigated by means of X-ray diffraction and by scanning electron microscopy (SEM). One of the objectives was to determine the quantity of hydrogen absorbed by the steel samples with and without the nitrided layer. To determine the quantity of the diffusible and trapped hydrogen, the electrochemical permeation and desorption methods were used. The influence of the nitrided layer on the entry, absorption and desorption of hydrogen was determined. The results revealed that the nitrided layer hinders absorption of hydrogen into and desorption of hydrogen from the membrane.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 183)

Pages:

71-80

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.A. El-Yazgi and D. Hardie: Corros. Sci. Vol. 38 (1996), p.735.

Google Scholar

[2] R. Oltra, C. Bouillot and T. Magnin: Scripta Mater. Vol. 35 (1996), p.1101.

Google Scholar

[3] A.A. El-Yazgi and D. Hardie: Corrosion. Science. Vol. 40 (1998), p.909.

Google Scholar

[4] S.T. Tsai, K.P. Yen and H.C. Shih: Corros. Sci. Vol. 40 (1998), p.281.

Google Scholar

[5] W.C. Luu, P.W. Liu and J.K. Wu: Corros. Sci. Vol. 44 (2002), p.1783.

Google Scholar

[6] T. Zakroczymski, A. Głowacka and W.A. Świątnicki: Corros. Sci. Vol. 47 (2005), p.1403.

Google Scholar

[7] A. Głowacka, A. Gołaszewski and W.A. Świątnicki: Material Engineering (Inżynieria Materiałowa) 3-4 (2007), p.768.

Google Scholar

[8] W.A. Świątnicki, in: Effects of Hydrogen on Materials, Proceedings of 2008 Int. Hydrogen Conference, edited by B. Somerday, P. Sofronis, R. Jones, ASM International, (2009), p.155.

Google Scholar

[9] B. Gołębiowski, W.A. Świątnicki and M. Gasperini: Journal of Microscopy-Oxford Vol. 237 (2010), p.352.

Google Scholar

[10] T. Michler and J. Nauman: Surface and Coatings Technology Vol. 203 (2009), p.1819.

Google Scholar

[11] T. Zakroczymski, N. Łukomski and J. Flis: Corros. Sci. Vol. 37 (1995), p.811.

Google Scholar

[12] Z. Wolarek and T. Zakroczymski: Acta Mater. Vol. 54 (2006), p.1525.

Google Scholar

[13] T. Zakroczymski and K. Mamińska: Protection from Corrosion (Ochrona przed korozją) Vol. 11 (2009), p.564.

Google Scholar

[14] C.E. Foerster, J.F.P. Souza, C.A. Silva, M. Ueda, N.K. Kuromoto, F.C. Serbena, S.L.R. Silva, and C.M. Lepienski: Nuclear Instruments and Methods in Physics Research, Vol. B 257 (2007), p.727.

DOI: 10.1016/j.nimb.2007.01.267

Google Scholar

[15] B. Gołębiowski, M. Kamiński and W.A. Świątnicki: Material Engineering (Inżynieria Materiałowa) 4 (2010), p.972.

Google Scholar

[16] B. Gołębiowski, T. Zakroczymski, R. Sobiecki and W. A Świątnicki: Material Engineering (Inżynieria Materiałowa) 3 (2010), p.320.

Google Scholar

[17] T. Bell: Surface Engineering Vol. 18 (2002), p.415.

Google Scholar

[18] T. Zakroczymski: J. Electroanal. Chem. Vol. 475 (1999), p.82.

Google Scholar