Internal Friction in Extruded Aluminium Alloy

Article Preview

Abstract:

Aluminium alloys have very useful properties. Because they are light, easily formed, machined and cast, they are widely used in aircraft industry and automotive industry. Their mechanical properties are mostly influenced by former mechanical and thermal treatment. An extruded aluminium alloy EN AW – 2007 was used in the as-received state and the specimens were thermally cycled with increasing the upper temperature step-by-step. After each thermal cycle the stress-amplitude dependence of internal friction was measured at room temperature. The quality factor Q-1 was measured by a resonant method at a frequency of 20 kHz. Thermal and mechanical treatments influenced the anelastic properties of the material. The thermal treatment affects the internal friction in a positive way, while the mechanical treatment decreases Q-1. The microstructural changes were observed by optical microscopy.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 184)

Pages:

197-202

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I.J. Polmear. Light Alloys: From Traditional Alloys to Nanocrystals. 4th edition, United Kingdom: Butterworth-Heinemann is an imprint of Elsevier, (2006).

Google Scholar

[2] P. Palček, J. Porubčan, D. Blažek, Z. Trojanová. Internal Friction in Commercial Aluminium Alloy AW-2007. Elsevier, Procedia Engineering 10 (2011) 1226-1231.

DOI: 10.1016/j.proeng.2011.04.204

Google Scholar

[3] M. S. Blantner, I.S. Golovin, H. Neuhäuser, H.R. Sinning, Internal Friction in Metallic Materials, Springer (2007).

Google Scholar

[4] C.Y. Xie, R. Schaller, C. Jaquerod. High damping capacity after precipitation in some commercial aluminium alloys. Mater. Sci. Eng. A 252 (1998) 78-84.

DOI: 10.1016/s0921-5093(98)00683-2

Google Scholar

[5] M. Goncalves, M.G. Martins, W.Z. Misiolek, W.H. Van Geertruyden. Homogenization and hot workability of alloy AA2014. Mater. Sci. Forum 396-402 (2002) 393-398.

DOI: 10.4028/www.scientific.net/msf.396-402.393

Google Scholar

[6] S. Koch and H. Antrekowitsch. Alloying Behaviour of Cu, Mg and Mn in Lead-free Al-Cu Based Alloys Intended for Free Machining, BHM 156 (2011) 22-27.

DOI: 10.1007/s00501-011-0621-z

Google Scholar

[7] M. Panušková, E. Tillová, M. Chalupová. Relation between mechanical properties and microstructure of Al-cast alloy AlSi9Cu3, Strength of Materials 40, 1 (2008) 98-101.

DOI: 10.1007/s11223-008-0026-8

Google Scholar

[8] C. Bathias, P. C. Paris. Gigacycle Fatigue in Mechanical Practice, M. Dekker, New York (2005).

Google Scholar

[9] J. Z. Yi, C. J. Torbet, Q. Feng, T. M. Pollock, J. W. Jones. Ultrasonic fatigue of a single crystal Ni-base superalloy at 1000 °C. Mat. Sci. Eng. A 443 (2007) 142-149.

DOI: 10.1016/j.msea.2006.08.028

Google Scholar

[10] K. Nishiyama, R. Matsui, Y. Ikeda, S. Niwa, T. Sakaguchi. Damping properties of a sintered Mg–Cu–Mn alloy. J. Alloy Comp. 355 (2003) 22-25.

DOI: 10.1016/s0925-8388(03)00256-1

Google Scholar

[11] H. Jiang, M. Li. Microscopic observation of cold-deformed Al-4Cu-Mg alloy samples after semi-solid heat treatments. Mater. Char. 54 (2005) 451-457.

DOI: 10.1016/j.matchar.2005.01.010

Google Scholar

[12] M. Gabbay, A. Vincent, G. Fantozzi. Amplitude-dependent internal friction due to thermomechanical breakaway of dislocations from pinning point defects. Phys. Status Solidi A 100 (1987) 121-137.

DOI: 10.1002/pssa.2211000114

Google Scholar

[13] R. B. Schwarz. Amplitude-dependent internal friction calculations for dislocations in alloys Acta Metall. 29 (1981) 311-323.

DOI: 10.1016/0001-6160(81)90158-9

Google Scholar

[14] N. A. Tyapunina and V. V. Blagoveshchenskii. Dislocation Behaviour and Multiplication under Ultrasound. Phys. Status Solidi A 69 (1982) 77-83.

DOI: 10.1002/pssa.2210690105

Google Scholar

[15] E. K. Naimi The Amplitude Dependence of Internal Friction and the Young's Modulus Defect in Solids Due to Anharmonism of Dislocation Motion at Low Vibration Amplitudes, Phys. Status Solidi A 72 (1982) 825–832.

DOI: 10.1002/pssa.2210720248

Google Scholar

[16] A. Vincent and J. Perez. Low-Temperature Point Defects and Dislocation Study from Megahertz Ultrasonic Measurements in Aluminium, Il Nuovo Cimento – B. 33 (1976) 147-154.

DOI: 10.1007/bf02722481

Google Scholar

[17] A. Granato and K. Lücke, Theory of Mechanical Damping Due to Dislocations, J. Appl. Phys. 27 (1956) 583.

DOI: 10.1063/1.1722436

Google Scholar

[18] A. V. Granato, K., Lücke: Application of dislocation theory to internal friction phenomena at high frequencies. J. Appl. Phys. 27(1956) 789-805.

DOI: 10.1063/1.1722485

Google Scholar