Internal Friction and Magnetic After-Effect Study of Dislocation Dynamics in Thermally Aged Fe-1%Cu-C Alloys

Article Preview

Abstract:

The effect of Cu-precipitation on the dislocation dynamics is studied by internal friction and magnetic after-effect measurements of thermally aged Fe1%CuC. We found that the copper precipitation in these alloys is accompanied by carbon redistribution. The results of both experiments showed that the hardening regime is governed by an increase of the dislocation density due to the growth of copper precipitates, while in the softening regime carbon redistribution plays a major role.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 184)

Pages:

215-220

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.B. Fisher, J.E. Harbottle, N. Aldridge, Radiation hardening in magnox pressure-vessel steels, Phil. Trans. R. Soc. Lond. A 315 (1962) 301.

DOI: 10.1098/rsta.1985.0042

Google Scholar

[2] G.R. Odette, On the dominat mechanism of irradiaition embrittlement of reactor pressure vessel steels, Scr. Metall. 17 (1983) 1183.

DOI: 10.1016/0036-9748(83)90280-6

Google Scholar

[3] K. C. Russel, L. M. Brown, A dispersion stengthening model based on differing elastic moduli applied to the iron-copper system, Acta Metall. 20 (1972) 969.

DOI: 10.1016/0001-6160(72)90091-0

Google Scholar

[4] W. J. Phythian, A. J. E. Foreman, C. A. English, J. T. Buswell, M. Hetherington, K. Roberts, S. Pizzini, The Structure and Hardening Mechanism of Copper Precipitation in Thermally Aged or Irradiated Fe-Cu and Fe-Cu-Ni Model Alloys, Eff. Rad. Mat., 15th Intern. Symp., ASTM STP 1125, American Society for Testing and Materials, Philadephia, 1992, p.131.

DOI: 10.1520/stp17866s

Google Scholar

[5] P. Haasen, Physical Metallurgy, third ed., Cambridge, (1996).

Google Scholar

[6] M.J. Konstantinović, Internal friction study of dislocation dynamics in neutron irradiated iron, and iron–copper alloys, J. Nucl. Mater. 395 (2009) 75.

DOI: 10.1016/j.jnucmat.2009.09.020

Google Scholar

[7] H. Ogi, H. Ledbetter, S. Kim, Snoek relaxation and dislocation damping in aged Fe-Cu-Ni steel, Metall. Mater. Trans. A 32 (2001) 1671.

DOI: 10.1007/s11661-001-0145-3

Google Scholar

[8] F. Walz, F. Walz, M. Weller and M. Hircher, Magnetic after-effect and internal friction as quantitative tools for the analysis of carbon and nytrogen in α-Fe, Phys. Stat. Sol (a) 154 (1996) 765.

DOI: 10.1002/pssa.2211540230

Google Scholar

[9] B. Minov, L. Dupré, M.J. Konstantinović, Magnetic after-effect study of dislocation relaxation in Fe-based alloys, J. Phys. D: Appl. Phys 44 (2011) 305002.

DOI: 10.1088/0022-3727/44/30/305002

Google Scholar

[10] M. Konstantinović, Tensile properties and internal friction study of dislocation movement in Fe-Cu system as a function of Cu-precipitation, J. Nucl. Mater. 362 (2007) 283.

DOI: 10.1016/j.jnucmat.2007.01.226

Google Scholar

[11] Y. Kamada, Y. Nishino, S. Hosoi, S. Tamaoka, N. Ide, H. Kikuchi, S. Kobayashi, Internal friction and magnetic properties of thermally aged Fe-1 wt. % Cu alloys, Mat. Sci. Eng. A 521-22 (2009) 209.

DOI: 10.1016/j.msea.2008.09.143

Google Scholar

[12] R. De Batist, Internal Friction of Structural Defects in Crystalline Solids, North Holland – American Elsevier (1972).

Google Scholar

[13] B. Minov, L. Vandenbossche, M. J. Konstantinović, L. Dupré, Magnetic after-effect study of the Cu-precipitation in thermally aged Fe-1%Cu alloys, IEEE Trans. Magn., 46 (2010) 521.

DOI: 10.1109/tmag.2009.2033943

Google Scholar

[14] J. L. Snoek, Physica, Elsevier 8 (1941)711.

Google Scholar

[15] Y. Wang, M. Gu, L. Sun, K. L. Ngai, Mechanism of Snoek-Köster relaxation in body-centered-cubic metals, Phys. Rev. B 50, (1994) 3525.

DOI: 10.1103/physrevb.50.3525

Google Scholar

[16] M.S. Blanter, I.S. Golovin, H. Neuhäuser, and H. -R. Sinning, Internal friction in metallic materials – A handbook, Springer, (2007).

DOI: 10.1007/978-3-540-68758-0

Google Scholar

[17] L.B. Magalas, Snoek-Köster relaxation. New insights - New paradigms, J. Physique IV 6 C-8 (1996) 163.

DOI: 10.1051/jp4:1996834

Google Scholar

[18] K. Van Ouytsel, R. De Batist, R. Schaller, An internal friction working model to advance the understanding of effects of radiation and thermal ageing on reactor pressure-vessel steels, J. Press. Vess. Pip. 80 (2003) 275.

DOI: 10.1016/s0308-0161(03)00045-0

Google Scholar

[19] H. Mizubayashi, H. Kronmüller, A. Seeger, The gamma-peak in deformed high purity α-Fe studied by forced vibrations out of resonance, J. Physique 46 C-10 (1985) 309.

DOI: 10.1051/jphyscol:19851069

Google Scholar

[20] G. Fantozzi, C. Esnouf, W. Benoit, I.G. Ritchie, Internal friction and microdeformation due to the intrinsic-properties of dislocations-the Bordoni relaxation, Prog. Mat. Sci. 27 (1982) 311.

DOI: 10.1016/0079-6425(82)90003-2

Google Scholar

[21] I.G. Ritchie, J. Dufresne, P. Moser, The internal-friction peaks –alpha and beta-1 in irradiated or deformed pure iron, Phys. Stat. Sol. A 61 (1980) 591.

DOI: 10.1002/pssa.2210610233

Google Scholar

[22] L.B. Magalas, P. Moser, I.G. Ritchie, The dislocation-enhanced Snoek-peak in Fe-C alloys, J. Phys. 44 (1983) C9-645.

DOI: 10.1051/jphyscol:1983997

Google Scholar

[23] F. Walz, H. J. Blythe, H. Kronmüller, Magnetic relaxation occuring in low-temperature electron-irradiated α-Fe after annealing above stage III (220 K), Phys. Stat. Sol. (a), 61 (1980) 607.

DOI: 10.1002/pssa.2210610235

Google Scholar