Stress Relaxation Behavior of Cu-Ni-P Alloys Evaluated from Amplitude-Dependent Internal Friction

Article Preview

Abstract:

The strain-amplitude dependence of internal friction in Cu-0.41Ni-0.11P (mass%) alloys has been evaluated to reveal the relation between the amplitude-dependent internal friction and the stress relaxation performance. Annealing at 250°C after cold rolling causes a suppression of the strain-amplitude dependence with increasing annealing time in the range between 10 s and 104 s. Analysis of the amplitude-dependent internal friction reveals the plastic strain of the order of 10-9 as a function of effective stress on dislocation motion. It is found that the microflow stress at a constant level of plastic strain increases with increasing annealing time. This result is in line with the improvement in the stress relaxation performance but disagrees with a decrease in the tensile strength and yield stress after annealing. We believe that the increase in the microflow stress after annealing is caused by inhibition of dislocation motion due to Ni-P clusters, which were revealed by three-dimensional atom probe (3DAP) experiments.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 184)

Pages:

245-250

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Aruga, D. W. Saxey, E. A. Marquis, H. Shishido, Y. Sumino, A. Cerezo, G. D. W. Smith, Effect of solute clusters on stress relaxation behavior in Cu-Ni-P alloys, Metall. Mater. Trans. A 40 (2009) 2888-2900.

DOI: 10.1007/s11661-009-0025-9

Google Scholar

[2] Y. Aruga, D. W. Saxey, E. A. Marquis, H. Shishido, Y. Sumino, A. Cerezo, G. D. W. Smith, Effect of P content on stress relaxation and clustering behavior in Cu-Ni-P alloys, Mater. Trans. 51 (2010) 1802-1808.

DOI: 10.2320/matertrans.m2010190

Google Scholar

[3] J. Miyake, Overview of connector copper alloys and technical issues, J. Jpn Copper Brass Res. Assoc. 36 (1997) 1-7.

Google Scholar

[4] J. Miyake, T. Kimura, T. Endo, Stress relaxation of Cu-Ti alloy C199, Proc. Symp. Creep and Stress Relaxation in Miniature Structures and Components, TMS, (Warrendale, PA, 1997) 57-74.

Google Scholar

[5] Y. Nishino, S. Asano, Determination of dislocation mobility from amplitude-dependent internal friction, Phys. Stat. Sol. (a) 151 (1995) 83-91.

DOI: 10.1002/pssa.2211510109

Google Scholar

[6] N. Ide, K. Hayakawa, S. Asano, Evaluation of microplastic flow stress in copper alloys from amplitude-dependent internal friction, Mater. Trans. 42 (2001) 435-438.

DOI: 10.2320/matertrans.42.435

Google Scholar

[7] Information on https: /www. copper-brass. gr. jp/data/file/banjou/standard/jcbat309. pdf.

Google Scholar

[8] A. B. Lebedev, Amplitude-dependent decrement to modulus defect ratio in breakaway models of dislocation hysteresis, Philos. Mag. A 74 (1996) 137-150.

DOI: 10.1080/01418619608239694

Google Scholar

[9] S. Asano, Analytical expressions of intrinsic internal friction based on damping data under inhomogeneous strains, Philos. Mag. 30 (1974) 1155-1159.

DOI: 10.1080/14786437408207267

Google Scholar

[10] S. Asano, Theory of nonlinear damping due to dislocation hysteresis, J. Phys. Soc. Jpn. 29 (1970) 952-963.

DOI: 10.1143/jpsj.29.952

Google Scholar

[11] E. V. Pereloma, A. Shekhter, M. K. Miller, S. P. Ringer, Ageing behaviour of an Fe-20Ni-1. 8Mn-1. 6Ti-0. 59Al(wt%) maraging alloy: clustering, precipitation and hardening, Acta Mater. 52 (2004) 5589-5602.

DOI: 10.1016/j.actamat.2004.08.018

Google Scholar

[12] S. P. Ringer, S. K. Caraher, I. J. Polmear, Response to comments on cluster hardening in an aged Al-Cu-Mg alloy, Scr. Mater. 39 (1998) 1559-1567.

DOI: 10.1016/s1359-6462(98)00364-9

Google Scholar

[13] Y. Aruga, D. W. Saxey, E. A. Marquis, A. Cerezo, G. D. W. Smith, Atom probe characterization of precipitation in an aged Cu-Ni-P alloy, Ultramicroscopy 111 (2011) 725-729.

DOI: 10.1016/j.ultramic.2011.01.003

Google Scholar