Isothermal Mechanical Spectroscopy in Equiatomic CuZr Alloy

Article Preview

Abstract:

An equiatomic CuZr alloy quenched from 1073 K was studied by isothermal mechanical spectroscopy and X-Ray diffraction. Experiments were performed using a very large frequency range (10-4 Hz – 50 Hz) at different temperatures. For each temperature of measurement, experiment started after complete microstructure stabilization of the sample. At room temperature, the X–Ray diffraction spectrum shows that there are two CuZr monoclinic phases as a consequence of a martensitic transformation. These structures are characterized by the existence of twinning defects for the first one and a high dislocation density for the other. Both monoclinic phases disappear at higher temperatures and first transform into the cubic CuZr phase, then this cubic phase transforms into Cu10Zr7 and CuZr2 phases above 763 K. Internal friction spectra exhibit two relaxation peaks (P1, P2), at low and high temperatures, respectively. After rapid cooling of the sample from 1273 K, the first peak P1 appears from room temperature and disappears after annealing above 673 K. The P2 peak appears at about 800 K and increases for measurements at higher temperature up to 880 K. This temperature range corresponds with the existence of both Cu10Zr7 and CuZr2 phases. These two peaks are associated with a relaxation linked to the dislocation microstructure in the two CuZr monoclinic phases for P1 and in the Cu10Zr7 and CuZr2 phases for P2.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 184)

Pages:

251-256

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Arias, J. P. Abriata, Bull. Alloy Phase Diagrams, 11 (1990) 452.

Google Scholar

[2] K. J. Zeng, M. Hämäläinen and H. L. Lukas. J. Phase Equilibria. 15 (1994) 577.

Google Scholar

[3] E. M. Carvalho, I. R. Harris, J. Mater. Sci., 15 (1980) 1224.

Google Scholar

[4] A. W. Nicholls, I. R. Harris, J. Mater. Sci. Letters, 5 (1986) 217.

Google Scholar

[5] Y.N. Koval, G. S. Firstov, A. V. Kotko, Scripta Met. et Mat., 27 (1992) 1611.

Google Scholar

[6] A. V. Zhalko-Titarenko, M. L. Yevlashina, V. N. Antonov, B. Yu. Yavorskii, Yu. N. Koval, G. S. Firstov, Phys. Stat. Sol., (b) 184 (1994) 121.

DOI: 10.1002/pssb.2221840108

Google Scholar

[7] D. Schryvers, G.S. Firstov, J.W. Sea, J. Van Humbeeck, Yu.N. Koval, Scripta. Mat., 36 (1997) 1119.

Google Scholar

[8] J. W. Seo, D. Schryvers, Acta. Mater., 46 (1998) 1165.

Google Scholar

[9] J. W. Seo, D. Schryvers, Acta. Mater., 46 (1998) 1177.

Google Scholar

[10] H. M. Kimura, K. Asami, A. Inoue, T. Masumoto, Corrosion Science, 35 (1993) 909.

Google Scholar

[11] L. Jastrow, U. Köster, M. Meuris, Mat. Sci. and Eng A 375–377 (2004) 440.

Google Scholar

[12] Triwikantoro, D. Toma, M. Meuris, U. Köster, J. Non-Crys. Sol. 250-252 (1999) 719.

Google Scholar

[13] W. Kai, T.H. Ho, H.H. Hsieh, Y.R. Chen, D.C. Qiao, F. Jiang, G. Fan, P.K. Liaw, The Minerals, Met. Mat. Society and ASM International (2007).

Google Scholar

[14] C.T. Liu, M.F. Chisholm, M.K. Miller, Intermetallics, 10 (2002) 1105.

Google Scholar

[15] R.G. Vichev, R.H. Petrov, W. Eckstein, J. Van Humbeeck, B. Blanpain, Applied Surface Science 144–145 (1999) 212.

DOI: 10.1016/s0169-4332(98)00799-5

Google Scholar

[16] J. Woirgard, Y. Sarrazin, H. Chaumet, Rev. Sci. Instr., 48 (1977) (1911).

Google Scholar

[17] A. Rivière, Low Frequency Techniques in R. Schaller, G. Fantozzi, G. Gremaud (Eds. ), Mechanical Spectroscopy Q-1 2001 with Applications to Materials Science, Trans tech Publication LTD, 2001, p.635.

Google Scholar

[18] J. Glimois, P. Forey, J. Feron, C. Becle, J. Less-Common Met., 78 (1981) 45.

DOI: 10.1016/0022-5088(81)90112-0

Google Scholar

[19] M. Nevitt, J. Downey, Trans. Met. Soc. AIME, 224 (1962) 195.

Google Scholar

[20] S. Belhas, C. Belamri, A. Rivière - Materials Sc. & Eng. - Vol. 521-522 (2009) 98.

Google Scholar

[21] G.S. Furstov, J. Van Humbeeck, Yu.N. Koval, Scr. Mater., 50 (2004) 243.

Google Scholar