Mechanical Spectroscopy of Annealing Effects in Electrodeposited Nickel/Ceramic Nanocomposites

Article Preview

Abstract:

The annealing behaviour of temperature-dependent mechanical spectra (vibrating-reed technique) was studied on electrodeposited ultrafine-grained nickel as well as on Ni nanocomposites with small (7 nm) SiO2 or larger (25 nm) Al2O3 nanoparticles. From the response of the different phenomena involved – Young’s modulus, high-temperature damping background, dislocation-and hydrogen-induced low-temperature loss peaks, and magnetomechanical effects – information is obtained on processes such as recovery, grain growth, hydrogen trapping, and dislocation generation by thermal stresses, which are influenced by both kinds of nanoparticles in different ways.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 184)

Pages:

295-300

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.W. Thompson, H.J. Saxton, Metall. Trans. 4 (1973) 1599-1605.

Google Scholar

[2] A.W. Thompson, Acta Metall. 23 (1975) 1337-1342.

Google Scholar

[3] A.M. El-Sherik, U. Erb, J. Mater. Sci. 30 (1995) 5743-5749.

Google Scholar

[4] H. Natter, M. Schmelzer, R. Hempelmann, J. Mater. Res. 13 (1998) 1186-1197.

Google Scholar

[5] F. Ebrahimi, G.R. Bourne, M.S. Kelly, T.E. Matthews, Nanostruct. Mater. 11 (1999) 343-350.

Google Scholar

[6] H. Ferkel, B. Müller, W. Riehemann, Mater. Sci. Eng. A 234-236 (1997) 474-476.

Google Scholar

[7] B. Müller, H. Ferkel, J. Metast. Nanocryst. Mater. 8 (2000) 476-481.

Google Scholar

[8] G. Vidrich, J. -F. Castagnet, H. Ferkel, J. Electrochem. Soc. 152 (2005) C294-C297.

Google Scholar

[9] G. Vidrich, H. Ferkel, V. Sklenička, K. Kuchařová, M. Pahutová, M. Svoboda, in: P. Sandera (Ed. ), Proc Nano'05, Brno, 2005, pp.310-313.

Google Scholar

[10] L. Hollang, E. Hieckmann, D. Brunner, C. Holste, W. Skrotzki, Mater. Sci. Eng. A 424 (2006) 138-153.

DOI: 10.1016/j.msea.2006.03.002

Google Scholar

[11] L. Hollang, K. Reuther, S.R. Dey, E. Hieckmann, W. Skrotzki, Mater. Sci. Forum 683 (2011) 193-201.

DOI: 10.4028/www.scientific.net/msf.683.193

Google Scholar

[12] V. Sklenička, K. Kuchařová, M. Pahutová, G. Vidrich, M. Svoboda, H. Ferkel, Mater. Sci. Eng. A 462 (2007) 269-274.

DOI: 10.1016/j.msea.2005.12.107

Google Scholar

[13] G. Vidrich, A. Flejszar, A. Mielczarek, W. Riehemann, Int. J. Mat. Res. 100 (2009) 895-897.

Google Scholar

[14] A. Flejszar, A. Mielczarek, G. Vidrich, W. Riehemann, Mater. Sci. Eng. A 521-522 (2009) 299-302.

DOI: 10.1016/j.msea.2008.10.067

Google Scholar

[15] H. -R. Sinning, G. Vidrich, W. Riehemann, Acta Mater. 59 (2011) 4504-4510.

Google Scholar

[16] G. Vidrich, O. Moll, A. Belousov, H. Ferkel, in: S.M. Mukhopadhyay, N.B. Dahotre, S. Seal, A. Agarwal (Eds. ), Surfaces and Interfaces in Nanostructured Materials II, Proc. TMS 2006, San Antonio, 2006, pp.41-46.

Google Scholar

[17] H. -R. Sinning, J. Phys.: Condensed Matter 3 (1991) 2005-(2020).

Google Scholar

[18] A.S. Nowick, B.S. Berry, Anelastic Relaxation in Crystalline Solids, Academic Press, New York, (1972).

Google Scholar

[19] H. Neuhäuser, K. Bothe, M. Obert, in: T.S. Kê (Ed. ), Proc ICIFUAS-9, Pergamon, Beijing, 1990, pp.233-236.

Google Scholar

[20] M.S. Blanter, H. Neuhäuser, I.S. Golovin, H. -R. Sinning, Internal Friction in Metallic Materials, A Handbook, Springer, Berlin, 2007, chapter 2. 6. 1, pp.97-113, and references therein.

DOI: 10.1007/978-3-540-68758-0

Google Scholar