Internal Friction and Shear Modulus of Graphene Films

Article Preview

Abstract:

We report internal friction and shear modulus measurements of several types of synthesized graphene films. They include reduced graphene oxide, chemical-vapor deposited (CVD) graphene films on thin nickel films and on copper foils. These films were transferred from their host substrate into a water bath, and re-deposited onto to a high-Q single crystal silicon mechanical double-paddle oscillator. A minimal thickness dependence of both internal friction and shear modulus was found for reduced graphene oxide films varying thickness from 4 to 90 nm and CVD graphene films on nickel from 6 to 8 nm. The shear modulus of these multilayered films averages 53 GPa. Their internal friction exhibits a temperature independent plateau below 10K. The values of the plateaus are similar for both the reduced graphene oxide films and CVD graphene films on nickel, and they are as high as the universal "glassy range" where the tunneling states dominated internal friction of amorphous solids lies. In contrast, CVD graphene films on copper foils are 90~95% single layer. The shear modulus of these single layer graphene films are about five times higher, averaging 280 GPa. Their low temperature internal friction is too small to measure within the uncertainty of our experiments. Our results demonstrate the dramatic difference in the elastic properties of multilayer and single layer graphene films.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 184)

Pages:

319-324

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Mater. 6 (2007) 183-191.

Google Scholar

[2] Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater. 22 (2010) 3906-3924.

DOI: 10.1002/adma.201001068

Google Scholar

[3] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321 (2008) 385-388.

DOI: 10.1126/science.1157996

Google Scholar

[4] I.W. Frank, D.M. Tanenbaum, A.M. van der Zande, P.L. McEuen, Mechanical properties of suspended graphene sheets, J. Vac. Sci. Technol. B 25 (2007) 2558-2561.

DOI: 10.1116/1.2789446

Google Scholar

[5] C. Chen, S. Rosenblatt, K.I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H.L. Stormer, T.F. Heinz, and J. Hone, Performance of monolayer graphene, Nat. Nanotechnol. 4 (2009) 861-867.

DOI: 10.1038/nnano.2009.267

Google Scholar

[6] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, Electronic confinement and coherence in patterned epitaxial graphene, Science 312 (2006) 1191-1196.

DOI: 10.1126/science.1125925

Google Scholar

[7] S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials, Nature 442 (2006) 282-286.

DOI: 10.1038/nature04969

Google Scholar

[8] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J. Ahn, P. Kim, J. Choi, B. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457 (2009) 706-710.

DOI: 10.1038/nature07719

Google Scholar

[9] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science 324 (2009) 1312-1314.

DOI: 10.1126/science.1171245

Google Scholar

[10] J.T. Robinson, M. Zalalutdinov, J.W. Baldwin, E.S. Snow, Z. Wei, P. Sheehan, B.H. Houston, Wafer-scale reduced graphene oxide films for nanomechanical devices, Nanolett. 8 (2008) 3441-3445.

DOI: 10.1021/nl8023092

Google Scholar

[11] X. Liu, J.T. Robinson, Z. Wei, P.E. Sheehan, B.H. Houston, E.S. Snow, Low temperature elastic properties of chemically reduced and CVD-grown graphene thin films, Diamond Relat. Mater. 19 (2010) 875-878.

DOI: 10.1016/j.diamond.2010.02.011

Google Scholar

[12] Sakhaee-Pour, Elastic properties of single-layered graphene sheet, Solid State Commun. 149 (2009) 91-95.

DOI: 10.1016/j.ssc.2008.09.050

Google Scholar

[13] F. Scarpa, S. Adhikari, A.S. Phani, Effective elastic mechanical properties of single layer graphene sheets, Nanotechnol. 20 (2009) 065709.

DOI: 10.1088/0957-4484/20/6/065709

Google Scholar

[14] X. Liu, T. H. Metcalf, P. Mosaner, A. Miotello, Microstructure dependence of low temperature elastic properties in amorphous diamond-like carbon films, Phys. Rev. B 71 (2005) 155419.

DOI: 10.1103/physrevb.71.155419

Google Scholar

[15] H.J. McSkimin, P. Andreatch, Elastic moduli of diamond as a function of pressure and temperature, J Appl. Phys. 43 (1972) 2944-2948.

DOI: 10.1063/1.1661636

Google Scholar

[16] A.M. van der Zande, R.A. Barton, J.S. Alden, C.S. Ruiz-Vargas, W.S. Whitney, P.H.Q. Pham, J. Park, J.M. Parpia, H.G. Craighead, P.L. McEuen, Large-scale arrays of single-layer graphene resonators, Nanolett. 8 (2010) 4869-4873.

DOI: 10.1021/nl102713c

Google Scholar

[17] T.H. Metcalf, X. Liu, B. H. Houston, J.W. Baldwin, J.E. Butler, T. Feygelson, Low temperature internal friction in nanocrystalline diamond films, Appl. Phys. Lett. 86 (2005) 081910.

DOI: 10.1063/1.1868065

Google Scholar

[18] J. E. Van Cleve, Ph.D. thesis, Cornell University, (1991).

Google Scholar

[19] R.O. Pohl, X. Liu, E. Thompson, Low temperature thermal conductivity and acoustic attenuation in amorphous solids, Rev. Mod. Phys. 74 (2002) 991-1013.

DOI: 10.1103/revmodphys.74.991

Google Scholar

[20] J. Tsai, J. Tu, Characterizing mechanical properties of graphite using molecular dynamics simulation, Mater. Des. 31 (2010) 194-199.

DOI: 10.1016/j.matdes.2009.06.032

Google Scholar

[21] S.K. Georgantzinos, G.I. Giannopoulos, N.K. Anifantis, Numerical investigation of elastic mechanical properties of graphene structures, Mater. Des. 31 (2010) 4646-4654.

DOI: 10.1016/j.matdes.2010.05.036

Google Scholar

[22] S.K. Georgantzinos, G.I. Giannopoulos, N.K. Anifantis, Numerical investigation of elastic mechanical properties of graphene structures, Mater. Des. 31 (2010) 4646-4654.

DOI: 10.1016/j.matdes.2010.05.036

Google Scholar