Anelastic Phenomena in Human Dentin below Room Temperature

Article Preview

Abstract:

The work describes the anelastic behaviour of human dentin below room temperature. Human molars, extracted from individuals as part of their dental treatment, were cut to obtain bar-shaped samples for mechanical spectroscopy (MS) experiments. Repeated cooling-heating cycles in the range 300-100 K have been carried out on the same samples. In the cooling stage of the first cycle Q-1 exhibits a very broad maximum due to a series of phase transformations involving water present in the pores, in the interstices between fibres, between fibrils and inside collagen triple helix. The formation of ice Ih produces permanent damages to the dentin structure (rupture of fibres and fibrils) leading to a decrease of maximum intensity in the following cycles. In the heating stage of all the cycles two maxima, M1 and M2, have been observed around 155 K and 178 K. M1 is due to the transformation of low-density amorphous (LDA) ice into ice IC while M2 to that of ice IC to ice Ih. Above 200 K, Q-1 progressively increases with lower damping values in the cycles after the first one. Dehydrated samples do not exhibit the aforesaid anelastic phenomena confirming that their origin is connected to water and its transformations.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 184)

Pages:

455-460

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.G. Marshall Jr, S.J. Marshall, J.H. Kinney, M. Balooch, The dentin substrate: structure and properties relate to bonding, J Dent. 25 (1997) 441- 458.

DOI: 10.1016/s0300-5712(96)00065-6

Google Scholar

[2] S. Amadori, E. Bonetti, I. Cappelloni, R. Montanari, Anelastic phenomena in human dentin above room temperature, Presented at ICIFMS-16 Losanna July (2011).

DOI: 10.4028/www.scientific.net/ssp.184.455

Google Scholar

[3] D.H. Pashley, Dynamics of the pulpo-dentin complex, Crit. Rev. Oral. Biol. Med. 7 (1996) 103-133.

Google Scholar

[4] J.H. Kinney, S.J. Marshall, G.W. Marshall, The mechanical properties of human dentin: a critical review and re-evaluation of the dental literature Crit. Rev. Oral. Biol. Med. 14 (2003) 13-29.

Google Scholar

[5] J.H. Kinney, M. Balooch, S.J. Marshall, G.W. Marshall, A micromechanics model of the elastic properties of human dentine, Arch. Oral. Biol. 44 (1999) 813-822.

DOI: 10.1016/s0003-9969(99)00080-1

Google Scholar

[6] J.C.W. Chien, E.P. Chang, Dynamic mechanical and rheo-optical studies of collagen and gelatin Biopolymers 11 (1972) 2015-(2031).

DOI: 10.1002/bip.1972.360111003

Google Scholar

[7] S. Nomura, A. Hiltner, J.B. Lando, E. Baer, Interaction of water with native collagen, Biopolymers 16 (1977) 231-246.

DOI: 10.1002/bip.1977.360160202

Google Scholar

[8] E. Baer, R. Kohn, Y.S. Papir, Mechanical relaxation behavior of collagen, polyglycine I, and nylon 6 in the range from 77° to 420° K, J. Macromol. Sci. Part B Phys. (1972) 761-774.

DOI: 10.1080/00222347208212569

Google Scholar

[9] H. Stefanou, A.E. Woodward, D. Morrow, Relaxation behavior of collagen Biophys. J. 13 (1972) 772-779.

Google Scholar

[10] M. Fois, A. Lamure, M.J. Fauran, C. Lacabanne, Study of human cortical bone and demineralized human cortical bone viscoelasticity J. Appl. Polym. Sci. 79 (2001) 2527-2533.

DOI: 10.1002/1097-4628(20010401)79:14<2527::aid-app1061>3.0.co;2-j

Google Scholar

[11] S. Amadori, E.G. Campari, A.L. Fiorini, R. Montanari, L. Pasquini, L. Savini, E. Bonetti, Automated resonant vibrating-reed analyzer apparatus for a non-destructive characterization of materials for industrial applications. Mater. Sci. Eng. A 442 (2006).

DOI: 10.1016/j.msea.2006.02.210

Google Scholar

[12] B. J. Murray and A. K. Bertram, Formation and stability of cubic ice in water droplets. Phys. Chem. Chem. Phys 8 (2006) 186-192.

DOI: 10.1039/b513480c

Google Scholar

[13] G. P. Johari, Crystallization kinetics of water below 150 K. J. Chem. Phys. 122 (2005) 2743-2747.

Google Scholar

[14] W.X. Zhang, C. He, J. S. Lian, Q. Jiang, Selected crystallization of water as a function of size. Chem. Phys. Lett. 421 (2006) 251-255.

Google Scholar

[15] T.C. Hansen, A. Falenty, W.F. Kuhs, in: Physics and Chemistry of Ice, W. Kuhs (Eds. ), Royal Society of Chemistry, Cambridge, 2007, pp.201-208.

Google Scholar

[16] O. Mishima, L.D. Calvert, E. Whalley, Melting ice, I at 77 K and 10 kbar: a new method of making amorphous solids. Nature 310 (1984) 393-395.

DOI: 10.1038/310393a0

Google Scholar

[17] O. Mishima, Reversible first-order transition between two H2O amorphs at ~0. 2 GPa and ~135 K. J. Chem. Phys. 100 (1994) 5910-5912.

DOI: 10.1063/1.467103

Google Scholar

[18] T. Loerting, C. Salzmann, I. Kohl, E. Mayer, A. Hallbrucker, A second distinct structural state of high-density amorphous ice at 77 K and 1 bar. Phys. Chem. Chem. Phys. 3 (2001) 5355-5357.

DOI: 10.1039/b108676f

Google Scholar

[19] F. Franks, Biophysics and Biochemistry at Low Temperatures, Cambridge University Press, Cambridge, (1985).

Google Scholar

[20] J. Urquidi, C. J. Benmore, P. A Egelstaff , M. Guthrie, S.E. McLain, C.A. Tulk, D.D. Klug, J.F.C. Turner, A structural comparison of supercooled water and intermediate density amorphous ices. Mol. Phys. 102 (2004) 2007-(2014).

DOI: 10.1080/00268970412331292650

Google Scholar

[21] P.G. Debenedetti, H.E. Stanley, Supercooled and glassy water. Phys. Today 6 (2003) 40-46.

Google Scholar