Toward High-Resolution Mechanical Spectroscopy HRMS - Logarithmic Decrement

Article Preview

Abstract:

In this work, we present the comparison between different methods used to compute the logarithmic decrement, δ . The parametric OMI method and interpolated DFT (IpDFT) methods are used to compute the δ from free decaying oscillations embedded in an experimental noise typical for low-frequency mechanical spectrometers. The results are reported for δ = 5×10-4, = 1.12345 Hz and different sampling frequencies, = 1 kHz and 4 kHz. A new YM algorithm yields the smallest dispersion in experimental points of the logarithmic decrement and the smallest relative errors among all investigated IpDFT methods. In general, however, the IpDFT methods suffer from spectral leakage and frequency resolution. Therefore it is demonstrated that the performance of different methods to compute the δ can be listed in the following order: (1) OMI, (2) YM, (3) YMC, and (4) the Yoshida method, Y. For short free decays the order of the best performers is different: (1) OMI and (2) YMC. It is important to emphasize that IpDFT methods (including the Yoshida method, Y) are discouraged for signals that are too short. In conclusion, the best methods to compute the logarithmic decrement are the OMI and the YM. These methods will pave the way toward high-resolution mechanical spectroscopy HRMS.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 184)

Pages:

467-472

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.B. Magalas, Determination of the logarithmic decrement in mechanical spectroscopy, Sol. St. Phen. 115 (2006) 7-14.

Google Scholar

[2] L.B. Magalas, M. Majewski, Recent advances in determination of the logarithmic decrement and the resonant frequency in low-frequency mechanical spectroscopy, Sol. St. Phen. 137 (2008) 15-20.

DOI: 10.4028/www.scientific.net/ssp.137.15

Google Scholar

[3] L.B. Magalas, T. Malinowski, Measurement techniques of the logarithmic decrement, Sol. St. Phen. 89 (2003) 247-260.

DOI: 10.4028/www.scientific.net/ssp.89.247

Google Scholar

[4] L.B. Magalas, M. Majewski, Ghost internal friction peaks, ghost asymmetrical peak broadening and narrowing. Misunderstandings, consequences and solution, Mater. Sci. Eng. A 521-522 (2009) 384-388.

DOI: 10.1016/j.msea.2008.10.073

Google Scholar

[5] L.B. Magalas, A. Stanisławczyk, Advanced techniques for determining high and extreme high damping: OMI – A new algorithm to compute the logarithmic decrement, Key Eng. Materials 319 (2006) 231-240.

DOI: 10.4028/www.scientific.net/kem.319.231

Google Scholar

[6] L.B. Magalas, A. Piłat, Zero-Point Drift in resonant mechanical spectroscopy, Sol. St. Phen. 115 (2006) 285-292.

DOI: 10.4028/www.scientific.net/ssp.115.285

Google Scholar

[7] L.B. Magalas, Mechanical spectroscopy – fundamentals, Sol. St. Phen. 89 (2003) 1-22.

Google Scholar

[8] S. Etienne, S. Elkoun, L. David, L.B. Magalas, Mechanical spectroscopy and other relaxation spectroscopies, Sol. St. Phen. 89 (2003) 31-66.

DOI: 10.4028/www.scientific.net/ssp.89.31

Google Scholar

[9] I. Yoshida, T. Sugai, S. Tani, M. Motegi, K. Minamida, H. Hayakawa, Automation of internal friction measurement apparatus of inverted torsion pendulum type, J. Phys. E: Sci. Instrum. 14 (1981) 1201-1206.

DOI: 10.1088/0022-3735/14/10/024

Google Scholar

[10] D. Agrež, A frequency domain procedure for estimation of the exponentially damped sinusoids, 12 MTC: 2009 IEEE Instrumentation and Measurement Technology Conference, 1-3 (2009) 1295-1300.

DOI: 10.1109/imtc.2009.5168660

Google Scholar

[11] K. Duda, L.B. Magalas, M. Majewski, T.P. Zieliński, DFT-based estimation of damped oscillation parameters in low-frequency mechanical spectroscopy, IEEE Transactions on Instrumentation and Measurement, 60 (2011) 3608 - 3618.

DOI: 10.1109/tim.2011.2113124

Google Scholar

[12] L.B. Magalas, Snoek-Köster relaxation. New insights – New paradigms, J. de Phys. IV, 6 (C8) (1996) 163-172.

DOI: 10.1051/jp4:1996834

Google Scholar

[13] E. Bonetti, E.G. Campari, L. Pasquini, L. Savini, Automated resonant mechanical analyzer, Rev. Sci. Instrum. 72 (2001) 2148-2152.

DOI: 10.1063/1.1357235

Google Scholar

[14] J. Rubianes, L.B. Magalas, G. Fantozzi, J. San Juan, The Dislocation-Enhanced Snoek Effect (DESE) in high-purity iron doped with different amounts of carbon, J. de Phys. 48 (C-8) (1987) 185-190.

DOI: 10.1051/jphyscol:1987825

Google Scholar

[15] L.B. Magalas, J.F. Dufresne, P. Moser, The Snoek-Köster relaxation in iron, J. de Phys. 42 (C-5) (1981) 127-132.

DOI: 10.1051/jphyscol:1981519

Google Scholar

[16] L.B. Magalas, S. Gorczyca, The Dislocation-Enhanced Snoek Effect – DESE in iron, J. de Phys. 46 (C-10) (1985) 253-256.

DOI: 10.1051/jphyscol:19851057

Google Scholar

[17] L.B. Magalas, P. Moser, I.G. Ritchie, The Dislocation-Enhanced Snoek Peak in Fe-C alloys, J. de Phys. 44 (C-9) 645-649. a b c d Fig. 1.   Dispersion of 100 d  values for 100 free decaying oscillations (d = 5×10-4, = 1. 12345 Hz, S/N= 32 dB, and = 1 kHz) computed according to: OMI, YM, YMC, YL, and Y methods for different lengths of the signal. a b c d Fig. 2.   Variation of the relative error for computed d values obtained for 100 free decaying oscillations (d = 5×10-4, = 1. 12345 Hz, S/N= 32 dB, = 1 kHz) according to different methods: OMI, YM, YMC, YL, and Y for different lengths of the signal. 3a 3b 4a 4b Fig. 3. The minimal and the maximal relative errors for computations of the logarithmic decrement d according to different methods as a function of the length of free decaying oscillations. Fig. 4. Variation of the standard deviation s as a function of the length of free decaying oscillations.

Google Scholar