Thermoactivated Pinning - A Novel Joining Technique for Thermoplastic Composites

Article Preview

Abstract:

Due to their good mechanical properties and short cycle times during processing, textile-reinforced thermoplastic composites gain increasing relevance for high-volume lightweight applications. Beyond that, by exploiting its specific processing capabilities, this composite material enables a variety of novel manufacturing techniques, e.g. for assembling. In this paper a joining technique is presented, which utilises the meltability of the thermoplastic matrix to establish a material-adapted joining method by introducing slender metallic pins into the composite structure. The processing principle is described and structural effects in the joining zone are analysed by means of microscopy. The load bearing behaviour is characterised by tensile tests on double-lap-shear specimen.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 188)

Pages:

176-181

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Hufenbach, M. Krahl, Automotive lightweight seat structure with textile reinforced thermoplastic composites, 5th annual conference Innovative Seating, 08-10 February 2010, Frankfurt (Germany).

Google Scholar

[2] A. Ruegg, S. Ziegler, D. Jaggi, N. Stotzner, Smart fourtwo tailgate: the first high-volume application of E-LFT technology, Jec Composites Magazine 45 (2008) 35–39.

Google Scholar

[3] K. Rugg, B. Cox, K. Ward, G. Sherrick, Damage mechanisms for angled through-thickness rod reinforcement in carbon-epoxy laminates, Composites Part A: Applied Science andManufacturing 29 (1998) 1603–1613.

DOI: 10.1016/s1359-835x(98)00087-6

Google Scholar

[4] B. Kolesnikov, L. Herbeck, A. Fink, Fortschrittliche Verbindungstechniken von Faser-verbundstrukturen, Deutscher Luft- und Raumfahrtkongress 2004, 20.-23. September 2004, p.9.

Google Scholar

[5] P. Chang, A. P. Mouritz, B. N. Cox, Properties and failure mechanisms of pinned composite lap joints in monotonic and cyclic tension, Comp. Sci. Techn. 66 (2006) 2163–2176.

DOI: 10.1016/j.compscitech.2005.11.039

Google Scholar

[6] I. K. Partridge, D. D. Cartié, Delamination resistant laminates by Z-Fiber pinning: Part I manufacture and fracture performance, Comp. Part A: Applied Science and Manufacturing 36 (2005) 55–64.

DOI: 10.1016/s1359-835x(04)00180-0

Google Scholar

[7] D. Cartié, M. Troulis, I. Partridge, Delamination of Z-pinned carbon fibre reinforced laminates, Composites Science and Technology 66 (2006) 855–861.

DOI: 10.1016/j.compscitech.2004.12.018

Google Scholar

[8] A. P. Mouritz, Review of z-pinned composite laminates, Composites Part A: Applied Science and Manufacturing 38 (2007) 2383–2397.

DOI: 10.1016/j.compositesa.2007.08.016

Google Scholar

[9] A. P. Mouritz, P. Chang, H. Kong, Tensile Properties of Z-Pinned Polymer Composite Laminates, in: SAMPE Europe Int. Conference, 27-29 March 2006, Volume C, Paris, p.371–376.

Google Scholar

[10] G. Freitas, C. Magee, P. Dardzinski, T. Fusco, Fiber Insertion Process for Improved Damage Tolerance in Aircraft Laminates, Journal of Advanced Materials 25 (1994) 36–43.

Google Scholar

[11] C. Reis, D. Reis, Z-fiber pinning tool, International Patent (1999) 1–20.

Google Scholar

[12] R. Olds, C. Feeney, Apparatus and method for providing reinforcement in a composite preform, International Patent (2000) 1–18.

Google Scholar

[13] D. W. Johnson, S. A. Garrett, S. G. Moyers, J. M. Hook, Method of inserting z-axis reinforcing fibers into a composite laminate, International Patent (2003) 1–18.

Google Scholar

[14] M. Heinzler, R. Kilgus, F. Näher, H. Paetzold, W. Röhrer, K. Schilling, Tabellenbuch Metall, Verlag Europa-Lehrmittel, Haan-Gruiten, 37 edition, 1990.

Google Scholar

[15] C. Steeves, N. Fleck, In-plane properties of composite laminates with through-thickness pin reinforcement, International Journal of Solids and Structures 43 (2006) 3197–3212.

DOI: 10.1016/j.ijsolstr.2005.05.017

Google Scholar

[16] W. Hufenbach, N. Modler, A. Winkler, R. Kupfer, Untersuchungen zur Charakterisierung des gradierten Faseranteils im Randbereich warmgeformter Löcher in textilverstärkten Thermoplastbauteilen, in: Tagung "Werkstoffprüfung 2010", 02. und 03. Dezember 2010, Verlag Stahleisen GmbH, Düsseldorf, Neu-Ulm, 2010, p.311–316.

Google Scholar

[17] R. Lahr, Partielles Thermoformen endlosfaserverstärkter Thermoplaste, Ph.D. thesis, Technische Universität Kaiserslautern, 2007.

Google Scholar

[18] N.N., Standard Test Method for Strength Properties of Double Lap Shear Adhesive Joints by Tension Loading (ASTM Standard D 3528), 1996.

DOI: 10.1520/d3528-96

Google Scholar

[19] J. Wiedemann, Leichtbau - Elemente und Konstruktion, Springer-Verlag, Berlin Heidelberg, 3. Ausgabe, 2007.

Google Scholar

[20] N.N., Product Information Twintex(R) T PP, Owens Corning Composite Materials LLC, Toledo, 2009.

Google Scholar