Electromechanical Resonance in Magnetoelectric Composites: Direct and Inverse Effect

Article Preview

Abstract:

Magnetoelectric (ME) coupling in the composites is mediated by the mechanical stress and one would expect orders of magnitude stronger coupling when the frequency of the ac field is tuned to acoustic mode frequencies in the sample than at non-resonance frequencies. A model is presented for the increase in ME coupling in magnetostrictive-piezoelectric bilayers for the longitudinal, radial, and bending modes in the electromechanical resonance region. We solved the equation of medium motion taking into account the magnetostatic and elastostatic equations, constitutive equations, Hooke's law, and boundary conditions. We estimated the ME voltage coefficient for direct ME effect and ME susceptibility for inverse ME coupling. The frequency dependence of the ME voltage coefficient and ME susceptibility reveals a resonance character in the electromechanical resonance region. Then we considered ME interaction in the magneto-acoustic resonance region at the coincidence of electromechanical and magnetic resonance. Variation in the piezomagnetic coefficient with static magnetic field for magnetic layer results in a dependence of ME voltage on applied bias magnetic field. As an example, we considered specific cases of cobalt ferrite or yttrium-ferrum garnet - lead zirconate titanate and nickel/permendur - lead zirconate titanate bilayers. Estimated values of ME voltage coefficient versus frequency profiles are in agreement with data.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 189)

Pages:

129-143

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. J. Freeman and H. Schmid: Magnetoelectric Interaction Phenomena in Crystals (Gordon and Breach, London, 1975).

Google Scholar

[2] M. Bichurin: Ferroelectrics Vol. 204 (1997), p.356.

Google Scholar

[3] Yu. N. Venevtsev and V. N. Lyubimov: Magnetoelectric Substances (Nauka, Moscow, 1990) (in Russian).

Google Scholar

[4] H. Schmid, A. Janner, H. Grimmer, J. -P. Rivera and Z. -G. Ye: Ferroelectrics Vol. 161–162 (1993), p.1.

Google Scholar

[5] M. I. Bichurin: Ferroelectrics Vol. 204 (1997), p.1.

Google Scholar

[6] M. I. Bichurin: Ferroelectrics Vol. 279–280 (2002), p.1.

Google Scholar

[7] G. Harshe, J. P. Dougherty and R. E. Newnham: Int. J. Appl. Electromagn. Mater. Vol. 4 (1993), p.161.

Google Scholar

[8] M. I. Bichurin, V. M. Petrov and S. Priya, in: Ferroelectrics - Physical Effects: Magnetoelectric Multiferroic Composites, edited by Mickaël Lallart, chapter 12, InTech, Croatia (2011).

Google Scholar

[9] C. -W. Nan, M. I. Bichurin, S. Dong, D. Viehland and G. Srinivasan: J. Appl. Phys. Vol. 103 (2008), p.031101.

Google Scholar

[10] M. I. Bichurin, D. A. Filippov, V. M. Petrov, V. M. Laletsin, N. N. Paddubnaya and G. Srinivasan: Phys. Rev. B Vol. 68 (2003), p.132408.

DOI: 10.1103/physrevb.68.132408

Google Scholar

[11] M. I. Bichurin, V. M. Petrov, S. V. Averkin and A. V. Filippov: Phys. Solid State Vol. 52 (2010), p.2116.

Google Scholar

[12] M.I. Bichurin and V.M. Petrov: Low Temp. Phys. Vol. 36 (2010), p.544.

Google Scholar

[13] M. I. Bichurin and D. Viehland: Magnetoelectricity in composites, (Pan Stanford Publishing, Singapore, 2011).

Google Scholar

[14] Z. Xing, S. Dong, J. Zhai, Li Yan, J. Li and D. Viehland: Appl. Phys. Lett. Vol. 89 (2006), p.112911.

Google Scholar

[15] J. Zhai, Z. Xing, S. Dong, J. Li, and D. Viehland: Appl. Phys. Lett. Vol. 93 (2008), p.072906.

Google Scholar

[16] D. V. Chashin, Y. K. Fetisov, and K. E. Kamentsev, and G. Srinivasan: Appl. Phys. Lett. Vol. 92 (2008), p.102511.

Google Scholar

[17] V. M. Petrov, G. Srinivasan, M. I. Bichurin and T. A. Galkina: J Appl. Phys. Vol. 105 (2009), p.063911.

Google Scholar

[18] Y. K. Fetisov, V. M. Petrov and G. Srinivasan: J. Mat. Res. Vol. 22 (2007), p. (2074).

Google Scholar

[19] M. I. Bichurin, V. M. Petrov, O. V. Ryabkov, S. V. Averkin and G. Srinivasan: Phys. Rev. B Vol. 72 (2005), p.060408(R).

Google Scholar

[20] O. V. Ryabkov, V. M. Petrov, M. I. Bichurin and G. Srinivasan: Tech. Phys. Lett. Vol. 32 (2006), p.1021.

Google Scholar