Molecular Spintronics

Article Preview

Abstract:

The emergence of spintronics (spin-based electronics), which exploits electronic charge as well as the spin degree of freedom to store/process data has already seen some of its fundamental results turned into actual devices during the last decade. Information encoded in spins persists even when the device is switched off; it can be manipulated with and without using magnetic fields and can be written using little energy. Eventually, spintronics aims at spin control of electrical properties (I-V characteristics), contrary to the common process of controlling the magnetization (spins) via application of electrical field. In the meantime, another revolution in electronics appears to be unfolding, with the evolution of Molecular Spintronics which aims at manipulating spins and charges in electronic devices containing one or more molecules, because a long spin lifetime is expected from the very small spin-orbit coupling in organic semiconductors. This futuristic area is fascinating because it promises the integration of memory and logic functions,

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 189)

Pages:

95-127

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova and D. M. Treger: Science Vol. 294 (2001), p.1488.

DOI: 10.1126/science.1065389

Google Scholar

[2] M. N. Baibich, J. M. Broto, A. Fert, F. N. V. Dau, F. Petro, P. Eitenne, G. Creuzet, A. Friederich and J. Chazelas: Phys. Rev. Lett. Vol. 61 (1988), p.2472.

DOI: 10.1103/physrevlett.61.2472

Google Scholar

[3] G. Binasch, P. Gruenberg, F. Saurenbach and W. Zinn: Phys. Rev. B Vol. 39 (1989), p.4828.

Google Scholar

[4] N. F. Mott: Proc. R. Soc. Lond. A Vol. 153 (1936), p.699.

Google Scholar

[5] C. N. R. Rao and B. Raveau: Transition Metal Oxides: Structures, Properties and Synthesis of Ceramic Oxides (Wiley-VCH, New York 1998); C. N. R. Rao and R. Voggu: Mater. Today Vol. 13 (2010).

DOI: 10.1002/(sici)1099-0739(199906)13:6<476::aid-aoc851>3.0.co;2-n

Google Scholar

[6] S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki and K. Ando: Nature Mater. Vol. 3 (2004), p.868.

Google Scholar

[7] D. D. Djayprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yusa, Y. Suzuki and K. Ando: Appl. Phys. Lett. Vol. 86 (2005), p.092502.

DOI: 10.1063/1.1871344

Google Scholar

[8] C. Kittel: Introduction to Solid State Physics, 8th Edition (John Wiley & Sons, USA 2005).

Google Scholar

[9] S. Datta and B. Das: Appl. Phys. Lett. Vol. 56 (1990), p.665.

Google Scholar

[10] G. A. Prinz: Science Vol. 282 (1998), p.1660.

Google Scholar

[11] T. Jungwirth, K.Y. Wang, J. Masek, K.W. Edmonds, J. Konig, J. Sinova, M. Polini, N. A. Goncharuk, A. H. MacDonald, M. Sawicki, A. W. Rushforth, R. P. Campion, L. X. Zhao, C. T. Foxon and B. L. Gallagher: Phys. Rev. B Vol. 72 (2005), p.165204.

DOI: 10.1103/physrevb.72.165204

Google Scholar

[12] A. M. Nazmul, T. Amemiya, Y. Shuto, S. Sugahara and M. Tanaka: Phys. Rev. Lett. Vol. 95 (2005), p.017201.

Google Scholar

[13] R. K. Zheng, M. P. Moody, B. Gault, Z. W. Liu, H. Liu and S.P. Ringer: J. Magn. Magn. Mater. Vol. 321 (2009), p.935.

Google Scholar

[14] V. Dediu, L. E. Hueso, I. Bergenti, A. Riminucci, F. Borgatti, P. Graziosi, C. Newby, F. Casoli, M. P. De Jong, C. Taliani and Y. Zhan: Phys. Rev. B Vol. 78 (2008), p.115203.

DOI: 10.1103/physrevb.78.115203

Google Scholar

[15] E. I . Rashba: Phys. Rev. B Vol. 62 (2000), p. R16267.

Google Scholar

[16] F. Meier and B. P. Zakharchenya: Optical Orientation Vol. 8 (North-Holland, Amsterdam, Netherlands 1984).

Google Scholar

[17] X. Lou, C. Adelmann, S. A. Crooker, E. S. Garlid, J. Zhang, K. S. M. Reddy, S. D. Flexner, C. J. Palmstrom and P. A. Crowell: Nature Phys. Vol. 3 (2007), p.197.

DOI: 10.1038/nphys543

Google Scholar

[18] S. P. Dash, S. Sharma, R. S. Patel, M. P. de Jong and R. Jansen: Nature Vol. 462 (2009), p.491.

Google Scholar

[19] J. S. Moodera, L. R. Kinder, T. M. Wong and R. Meservey: Phys. Rev. Lett. Vol. 74 (1995), p.3273.

Google Scholar

[20] K. Tsukagoshi, B. W. Alphenaar and H. Ago: Nature Vol. 401 (1999) p.572.

Google Scholar

[21] V. Dediu, M. Murgia, F. C. Matacotta, C. Taliani and S. Barbanera: Solid State Commun. Vol. 122 (2002), p.181.

DOI: 10.1016/s0038-1098(02)00090-x

Google Scholar

[22] F. Wang and Z. V. Vardeny: J. Mater. Chem. Vol. 19 (2009), p.1685.

Google Scholar

[23] Z. H. Xiong, D. Wu, Z. V. Vardeny and J. Shi: Nature Vol. 427 (2004), p.821.

Google Scholar

[24] T. S. Santos, J. S. Lee, P. Migdal, I. C. Lekshmi and J. S. Moodera: Phys. Rev. Lett. Vol. 98 (2007), p.016601.

Google Scholar

[25] G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip and B. J. van Wees: Phys. Rev. B Vol. 62 (2000), p. R4790.

Google Scholar

[26] A. Ozbay, E. R. Nowak, Z. G. Yu, W. Chu, Y. Shi, S. Krishnamurthy, Z. Tang and N. Newman: Appl. Phys. Lett. Vol. 95 (2009), p.232507.

DOI: 10.1063/1.3271772

Google Scholar

[27] J. -W. Yoo, H. W. Jang, V. N. Prigodin, C. Kao, C. B. Eom and A. J. Epstein: Phys. Rev. B Vol. 80 (2009), p.205207.

Google Scholar

[28] T. D. Nguyen, G. Hukic-Markosian, F. J. Wang, L. Wojcik, X. G. Li, E. Ehrenfreund and Z. V. Vardeny: Nature Mater. Vol. 9 (2010), p.345.

DOI: 10.1038/nmat2633

Google Scholar

[29] S. Schmaus, A. Bagrets, Y. Nahas, T. K. Yamada, A. Bork, M. Bowen, E. Beaurepaire, F. Evers and W. Wulfhekel: Nat. Nanotechnol., Vol. 6 (2011), p.185.

DOI: 10.1038/nnano.2011.11

Google Scholar

[30] J. Hwang, A. Wan and A. Kahn: Mater. Sci. Eng. R Vol. 64 (2009), p.1.

Google Scholar

[31] G. Szulczewski, S. Sanvito and M. Coey: Nat. Mater. Vol. 8 (2009), p.693.

Google Scholar

[32] P. P. Ruden and D. L. Smith: J. App. Phys. Vol. 95 (2004), p.4898.

Google Scholar

[33] N. F. Mott: Phil. Mag. Vol. 19 (1969), p.835.

Google Scholar

[34] V. Prigodin, J. Bergeson, D. Lincoln and A. Epstein: Synth. Met. Vol. 156 (2006), p.757.

Google Scholar

[35] J. H. Shim, K. V. Raman, Y. J. Park, T. S. Santos, G. X. Miao, B. Satpati and J. S. Moodera: Phys. Rev. Lett. Vol. 100 (2008), p.226603.

Google Scholar

[36] M. Grobosch, C. Schmidt, W. J. M. Naber, W. G. van der Wiel and M. Knupfer: Synth. Met. Vol. 160 (2010), p.238.

Google Scholar

[37] P. A. Bobbert, W. Wagemans, F. W. A. van Oost, B. Koopmans and M. Wohlgenannt: Phys. Rev. Lett. Vol. 102 (2009), p.156604.

DOI: 10.1103/physrevlett.102.156604

Google Scholar

[38] S. Bandyopadhyay: Phys. Rev. B vol. 81 (2010), p.153202.

Google Scholar

[39] B. Kanchibotla, S. Paramanik, S. Bamdyopadhyay and M. Cahay: Phys. Rev. B Vol. 78 (2008), p.193306.

Google Scholar

[40] S. Pramanik, C. G. Stefanita, S. Patibandla, S. Bandyopadhyay, K. Garre, N. Harth and M. Cahay: Nat. Nanotechnol. Vol. 2 (2007), p.216.

DOI: 10.1038/nnano.2007.64

Google Scholar

[41] V. A. Dediu, L. E. Hueso, I. Bergenti and C. Taliani: Nat. Mater. Vol. 8 (2009), p.707.

Google Scholar

[42] Z. Xu, B. Hu and J. Howe: J. App. Phys. Vol. 103 (2008), p.043909.

Google Scholar

[43] P. Shakya, P. Desai, M. Somerton, G. Gannaway, T. Kreouzis and W. P. Gillin: J. App. Phys. Vol. 103 (2008), p.103715.

Google Scholar

[44] O. Mermer, G. Veeraraghavan, T. L. Francis, Y. Sheng, D. T. Nguyen, M. Wohlgenannt, A. Kohler, M. K. Al-Suti and M. S. Khan: Phys. Rev. B Vol. 72 (2005), p.205202.

Google Scholar

[45] S. Majumdar, H. S. Majumdar, H. Aarnio, D. Vanderzande, R. Laiho, and R. Österbacka: Phys. Rev. B Vol. 79 (2009), p.201202.

DOI: 10.1103/physrevb.79.201202

Google Scholar

[46] T. D. Nguyen, B. R. Gautam, E. Ehrenfreund and Z. V. Vardeny: Synth. Met. Vol. 161 (2011), p.604.

Google Scholar

[47] P. A. Bobbert, T. D. Nguyen, F. W. A. van Oost, B. Koopmans and M. Wohlgenannt: Phys. Rev. Lett. Vol. 99 (2007), p.216801.

Google Scholar

[48] Y. Sheng, T. D. Nguyen, G. Veeraraghavan, O. Mermer, M. Wohlgenannt, S. Qiu, and U. Scherf: Phys. Rev. B Vol. 74 (2006), p.045213.

DOI: 10.1103/physrevb.74.045213

Google Scholar

[49] B. Hu, L. Yan and M. Shao: Adv. Mater. Vol. 21 (2009), p.1500.

Google Scholar

[50] D. K. Aswal and J. V. Yakhmi (Editors): Molecular and Organic Electronic Devices, Electrical Engineering Development Series, Nova Science Publishers, Inc. New York (2010).

Google Scholar

[51] P. A. Bobbert, T. D. Nguyen, W. Wagemans, F. W. A. van Oost, B. Koopmans and M. Wohlgenannt: Synth. Met. Vol. 160 (2010), p.223.

DOI: 10.1016/j.synthmet.2009.06.002

Google Scholar

[52] A. N. Pasupathy, R. C. Bialczak, J. Martinek, J. E. Grose, L. A. K. Donev, P. L. McEuen and D. C. Ralph: Science Vol. 306 (2004), p.86.

DOI: 10.1126/science.1102068

Google Scholar

[53] G. Schmidt: J. Phys. D Vol. 38 (2005), p. R105.

Google Scholar

[54] Y. Q. Zhan, I. Bergenti, L. E. Hueso, V. Dediu, M. P. de Jong and Z. S. Li: Phys. Rev. B Vol. 76 (2007), p.045406.

Google Scholar

[55] C. Barraud, P. Seneor, R. Mattana, S. Fusil, K. Bouzehouane, C. Deranlot, P. Graziosi, L. Hueso, I. Bergenti, V. Dediu, F. Petroff and A. Fert: Nat. Phys. Vol. 6 (2010), p.615.

DOI: 10.1038/nphys1688

Google Scholar

[56] S. Sanvito : Nat. Phys. Vol. 6 (2010), p.562.

Google Scholar

[57] N. A. Morley, D. Dhandapani, A. Rao, H. Al Qahtani, M. R. J. Gibbs, M. Grell, D. Eastwood and B. K. Tanner: Synth. Met. Vol. 161 (2011), p.558.

DOI: 10.1016/j.synthmet.2010.11.011

Google Scholar

[58] J. -W. Yooa, H. W. Jang, V. N. Prigodin, C. Kao, C. B. Eom and A. J. Epstein : Synth. Met. Vol. 160 (2010), p.216.

Google Scholar

[59] A. Kumar, A Singh, S. Samanta, K. Vasundhara, A. K. Debnath, D. K. Aswal, S. K. Gupta and J. V. Yakhmi: J. Phys. Cond. Matter Vol. 23 (2011), p.355801.

DOI: 10.1088/0953-8984/23/35/355801

Google Scholar

[60] K. Miyamoto, K. Iori, K. Sakamoto, A. Kimura, S. Qiao, K. Shimada, H. Namatame and M. Taniguchi: J. Phys. Cond. Matter Vol. 20 (2008), p.225001.

DOI: 10.1088/0953-8984/20/22/225001

Google Scholar

[61] K. D. Bozdag, N. -R. Chiou, V. N. Prigodin and A. J. Epstein: Synth. Met. Vol. 160 (2010), p.271.

Google Scholar

[62] H. Tajima, M. Miyakawa, H. Isozaki, M. Yasui, N. Suzuki and M. Matsuda: Synth. Met. Vol. 160 (2010), p.256.

Google Scholar

[63] M. B. Murphey, J. D. Bergeson, S. J. Etzkorn, L. Qu, L. Li, L. Dai and A. J. Epstein: Synth. Met. Vol. 160 (2010), p.235.

Google Scholar

[64] S. Sahoo, T. Kontos, J. Furer, C. Hoffmann, M. Gräber, A. Cottet and C. Schönenberger: Nat. Phys. Vol. 1 (2005), p.99.

DOI: 10.1038/nphys149

Google Scholar

[65] P. Petit, E. Jouguelet, J. E. Fischer, A. G. Rinzler and R. E. Smalley: Phys. Rev. B Vol. 56 (1997), p.9275.

Google Scholar

[66] A.K. Geim and K.S. Novoselov: Nature Mater. Vol. 6 (2007), p.183.

Google Scholar

[67] N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman and B. J. van Wees: Nature Vol. 448 (2007), p.571.

DOI: 10.1038/nature06037

Google Scholar

[68] A. K. Geim: Science Vol. 324 (2009).

Google Scholar

[69] W. Y. Kim and K. S. Kim: Nat. Nanotech. Vol. 3 (2008), p.408.

Google Scholar

[70] Y. W. Son, M. L. Cohen and S. G. Louie: Nature Vol. 444 (2006), p.347.

Google Scholar

[71] O. V. Yazyev: Rep. Prog. Phys. Vol. 73 (2010), p.056501.

Google Scholar

[72] W. Y. Kim and K. S. Kim: Acc. Chem. Res. Vol. 43 (2010), p.111.

Google Scholar

[73] D. Gatteschi, R. Sessoli and J. Villain: Molecular Nanomagnets (Oxford University Press, Oxford 2006).

Google Scholar

[74] L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli and B. Barbara: Nature Vol. 383 (1996), p.145.

DOI: 10.1038/383145a0

Google Scholar

[75] W. Wernsdorfer and R. Sessoli: Science Vol. 284 (1999), p.133.

Google Scholar

[76] A. Ardavan, O. Rival, J. J. L. Morton, S. J. Blundell, A. M. Tyryshkin, G. A. Timco and R. E. P. Winpenny: Phys. Rev. Lett. Vol. 98 (2007), p.057201.

DOI: 10.1103/physrevlett.98.057201

Google Scholar

[77] A. S. Zyazina, H. S. J. van der Zanta, M. R. Wegewijs and A. Cornia: Synth. Met. Vol. 161 (2011), p.591.

Google Scholar

[78] L. Bogani and W. Wernsdorfer: Nat. Mater. Vol. 7 (2008), p.179.

Google Scholar

[79] G. Christou, D. Gatteschi, D.N. Hendrickson and R. Sessoli: Mater. Res. Soc. Bull. Vol. 25 (2000), p.66.

Google Scholar

[80] H. B. Heersche, Z. de Groot, J. A. Folk, H. S. J. van der Zant, C. Romeike, M. R. Wegewijs, L. Zobbi, D. Barreca, E. Tondello and A. Cornia: Phys. Rev. Lett. Vol. 96 (2006).

DOI: 10.1103/physrevlett.96.206801

Google Scholar

[81] M. Urdampilleta, S. Klyatskaya, J. -P. Cleuziou, M. Ruben and W. Wernsdorfer: Nat. Mater. Vol. 10 (2011), p.502.

DOI: 10.1038/nmat3050

Google Scholar

[82] M. Urdampilleta, N. Nguyen, J. -P. Cleuziou, S. Klyatskaya, M. Ruben and W. Wernsdorfer: Int. J. Mol. Sci. Vol. 12 (2011). p.6656.

Google Scholar

[83] D. Gatteschi, A. Cornia, M. Mannini and R. Sessoli: Inorg. Chem. Vol. 48 (2009), p.408.

Google Scholar

[84] A. Candini, S. Klyatskaya, M. Ruben, W. Wernsdorfer and M. Affronte: Nano Lett. Vol. 11 (2011), p.2634.

DOI: 10.1021/nl2006142

Google Scholar

[85] C. Timm and F. Elste: Phys. Rev. B Vol. 73 (2006), p.235304.

Google Scholar

[86] N. P. Raju, V. N Prigodin, K. I. Pokhodnya, J. S. Miller and A. J. Epstein: Synth. Met. Vol. 160 (2010), p.307.

Google Scholar

[87] J. -W. Yoo, C. -Y. Chen, H.W. Jang, C.W. Bark, V. N. Prigodin, C. B. Eom and A. J. Epstein: Nature Mater. Vol. 9 (2010), p.638.

Google Scholar

[88] A. T. Hanbicki, B. T. Jonker, G. Itskos, G. Kioseoglou and A. Petrou: Appl. Phys. Lett. Vol. 80 (2002), p.1240.

DOI: 10.1063/1.1449530

Google Scholar

[89] L. Fang, PhD Dissertation in Physics, Ohio State University (2011).

Google Scholar

[90] V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey and J. -L. Brédas: Chem. Rev. Vol. 107 (2007) p.926.

DOI: 10.1021/cr050140x

Google Scholar

[91] M. Cinchetti, K. Heimer, J. -P. Wüstenberg, O. Andreyev, M. Bauer, S. Lach, C. Ziegler, Y. Gao and M. Aeschlimann: Nat. Mater. Vol. 8 (2009), p.115.

DOI: 10.1038/nmat2334

Google Scholar

[92] Y. Liu, S. M. Watson, T. Lee, J.M. Gorham, H. E. Katz, J. A. Borchers, H. D. Fairbrother and D. H. Reich: Phys. Rev. B Vol. 79 (2009) p.075312.

Google Scholar

[93] Y. Q. Zhan, M. P. de Jong, F. H. Li, V. Dediu, M. Fahlman and W. R. Salaneck: Phys. Rev. B Vol. 78 (2008), p.045208.

Google Scholar

[94] A. J. Drew: presentation at 1st Inter. Conf. of Spin Effects in Organics, Bologna, Italy, (September 2007).

Google Scholar

[95] S. Sanvito: Nat. Mater. Vol. 6 (2007), p.803.

Google Scholar

[96] Y. Zhang, G. Hukic-Markosian, D. Mascaro and Z. V. Vardeny: Synth. Met. Vol. 160 (2010), p.262.

Google Scholar

[97] Y. Morita, S. Suzuki, K. Sato and T. Takui: Nat. Chem. Vol. 3 (2011), p.197.

Google Scholar

[98] T. Sugawara and M. M. Matsushita: J. Mater. Chem. Vol. 19 (2009), p.1738.

Google Scholar

[99] R. Liu, S. -H. Ke, H. U. Baranger and W. Yang: J. Am. Chem. Soc. Vol. 128 (2006), 6274.

Google Scholar

[100] S. Shi, G. Schmerber, J. Arabski, J. -B. Beaufrand, D. J. Kim, S. Boukari, M. Bowen, N. T. Kemp, N. Viart, G. Rogez, E. Beaurepaire, H. Aubriet, J. Petersen, C. Becker and D. Ruch: Appl. Phys. Lett. Vol. 95 (2009), p.043303.

DOI: 10.1063/1.3192355

Google Scholar

[101] W. Fujita and K. Awaga: Science Vol. 286 (1999), p.261.

Google Scholar

[102] C. Felser, G. H. Fecher and B. Balke: Angew. Chem. Int. Ed. Vol. 46 (2007), p.668; S. D. Bader and S. S. P. Parkins: Annu. Rev. Condens. Matter Phys. Vol. 1 (2010), p.71.

Google Scholar

[103] I. Zutic, J. Fabian and S. Das Sarma: Rev. Mod. Phys. Vol. 76 (2004), p.323.

Google Scholar

[104] J. V. Yakhmi: Bull. Mater. Sci. (India) Vol. 32 (2009), p.217; J. V. Yakhmi: Macromol. Symposia Vol. 212 (2004), p.141.

Google Scholar

[105] I. Bergenti, V. Dediu, M. Prezioso and A. Riminucci: Philos. Trans. R. Soc. London, Ser. A Vol. 369 (2011), p.3054; J. Ferrer and V. M. Garcia-Suarez: J. Mater. Chem. Vol. 19 (2009), p.1697.

Google Scholar