Recent Applications of Landau-Ginzburg Theory to Ferroelectric Superlattices: A Review

Article Preview

Abstract:

This article briefly reviews recent developments of Landau-Ginzburg theory to ferroelectric phase transitions in superlattices. An overview of the contributions of Landau-type theory to study ferroelectric superlattices is given. Recent findings from first-principles calculations and experiments on intermixing, local polarization coupling and polar discontinuity at interfaces that are not address in these contributions are highlighted. This is followed by a review of recent developments of Landau-Ginzburg theory that addresses these emergent phenomena at interfaces, which is the focus of this review article. The Landau-Ginzburg approach to ferroelectric superlattices with spatial distribution of polarization is outlined. It describes the formation of intermixed layer with properties different from those of both layers. These intermixed layers are mutually coupled through the local polarization at interfaces. Polarization continuity or continuity at interfaces is determined by the nature of the intermixed layer formed at the interface region. Recent results obtained in investigating superlattices comprised primarily of ferroelectric and paraelectric materials are discussed. The results include modulated polarizations, phase transitions, dielectric susceptibilities and switching behaviors.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 189)

Pages:

145-167

Citation:

Online since:

June 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. M. Gregg: J. Phys.: Condens. Matter Vol. 15 (2003), p. V11.

Google Scholar

[2] K. M. Rabe: Current Opinion in Solid State and Mater. Science Vol. 9 (2005), p.122.

Google Scholar

[3] M. Dawber, K. M. Rabe and J. F. Scott: Rev. Mod. Phys. Vol. 77 (2005), p.1083.

Google Scholar

[4] H. M. Christen, D. H. Kim and C. M. Rouleau: Appl. Phys. A Vol. 93 (2008), p.807.

Google Scholar

[5] P. Zubko, S. Gariglio, M. Gabay, P. Ghosez and J. -M. Triscone: Annu. Rev. Condens. Matter Phys. Vol. 2 (2011), p.141.

DOI: 10.1146/annurev-conmatphys-062910-140445

Google Scholar

[6] J. F. Scott: Ferroelectric memories (Springer-Verlag, Berlin 2000).

Google Scholar

[7] J. Muralt: J Micromech. Microeng. Vol. 10 (2000), p.136.

Google Scholar

[8] M. Dawber, C. Lichtensteiger, M. Cantoni, M. Veithen, P. Ghosez, K. Johnston, K. M. Rabe and J. -M. Triscone: Phys. Rev. Lett. Vol. 95 (2005), p.177601.

Google Scholar

[9] E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J. -M. Triscone and P. Ghosez: Nature Vol. 452 (2008), p.732.

DOI: 10.1038/nature06817

Google Scholar

[10] G. Rijnders and D. H. A. Blank: Nature Vol. 433 (2005), p.369.

Google Scholar

[11] M. Dawber, N. Stucki, C. Lichtensteiger, S. Gariglio, P. Ghosez and J. -M. Triscone: Adv. Mater. Vol. 19 (2007), p.4153.

DOI: 10.1002/adma.200700965

Google Scholar

[12] T. Tsurumi, T. Ichikawa, T. Harigai, H. Kakemoto and S. Wada: J. Appl. Phys. Vol. 91 (2002), p.2284.

Google Scholar

[13] N. Wang, H.B. Lu, W.Z. Chen, T. Zhao, F. Chen, H.Y. Peng, S.T. Lee and G.Z. Yang: Appl. Phys. Lett. Vol. 75 (1999), p.3464.

Google Scholar

[14] J. C. Jiang, X. Q. Pan, W. Tian, C. D. Theis and D. G. Schlom: Appl. Phys. Lett. Vol. 74 (1999), p.2851.

Google Scholar

[15] H. Tabata, H. Tanaka and T. Kawai: Appl. Phys. Lett. Vol. 65 (1994), p. (1970).

Google Scholar

[16] J. Kim, Y. Kim, Y.S. Kim, J. Lee, L. Kim and D. Jung: Appl. Phys. Lett. Vol. 80 (2002), p.3581.

Google Scholar

[17] B. D. Qu, M. Evstigneev, D.J. Johnson and R.H. Princes: Appl. Phys. Lett. Vol. 72 (1998), p.1394.

Google Scholar

[18] H. -N. Tsai, Y. -C. Liang and H. -Y. Lee: J. Cryst. Growth Vol. 284 (2005), p.65.

Google Scholar

[19] S. -J. Chiu, Y. -T. Liu, H. -Y. Lee, G. -P. Yu and J. -H. Huang: J. Cryst. Growth Vol. 334 (2011), p.90.

Google Scholar

[20] T. Zhao, Z. -H. Chen, F. Chen, W. -S. Shi, H. -B. Lu and G. -Z. Yang: Phys. Rev. B Vol. 60 (1999), p.1697.

Google Scholar

[21] T. Shimuta, O. Nakagawara, T. Makino, S. Arai, H. Tabata and T. Kawai: J. Appl. Phys. Vol. 91 (2002), p.2290.

Google Scholar

[22] A. Q. Jiang, J. F. Scott, H. Lu and Z. Chen: J. Appl. Phys. Vol. 93 (2003), p.1180.

Google Scholar

[23] S. Ríos, A. Ruediger, A. Q. Jiang, J. F. Scott, H. Lu and Z. Chen: J. Phys.: Condens. Matter Vol. 15 (2003), p. L305.

Google Scholar

[24] W. Tian, J. C. Jiang, X. Q. Pan, J. H. Haeni, Y. L. Li, L. Q. Chen, D. G. Schlom, J. B. Neaton, K. M. Rabe and Q. X. Jia: Appl. Phys. Lett. Vol. 89 (2006), p.092905.

DOI: 10.1063/1.2335367

Google Scholar

[25] D. A. Tenne, A. Bruchhausen, N. D. Lanzillotti-Kimura, A. Fainstein, R. S. Katiyar, A. Cantarero, A. Soukiassian, V. Vaithyanathan, J. H. Haeni, W. Tian, D. G. Schlom, K. J. Choi, D. M. Kim, C. B. Eom, H. P. Sun, X. Q. Pan, Y. L. Li, L. Q. Chen, Q. X. Jia, S. M. Nakhmanson, K. M. Rabe and X. X. Xi: Science Vol. 313 (2006).

DOI: 10.1126/science.1130306

Google Scholar

[26] A. Sarkar and S. B. Krupanidhi: J. Appl. Phys. Vol. 101 (2007), p.104113.

Google Scholar

[27] J. Hiltunen, J. Lappalainen, J. Puustinen, V. Lantto and H. L. Tuller: Opt. Express Vol. 16 (2008), p.8219.

DOI: 10.1364/oe.16.008219

Google Scholar

[28] Z. W. Xiong, W. G. Sun, X. M. Wang, F. Jiang and W. D. Wu: J. Alloys Compd. Vol. 513 (2012), p.300.

Google Scholar

[29] P. Zubko, N. Stucki, C. Lichtensteiger and J. -M. Triscone: Phys. Rev. Lett. Vol. 104 (2011), p.187601.

Google Scholar

[30] J. Y. Jo, P. Chen, R. J. Sichel, S. J. Callori, J. Sinsheimer, E. M. Dufresne, M. Dawber and P. G. Evans: Phys. Rev. Lett. Vol. 107 (2011), p.055501.

DOI: 10.1103/physrevlett.107.055501

Google Scholar

[31] H. M. Christen, E. D. Specht, D. P. Norton, M. F. Chisholm and L. A. Boatner: Appl. Phys. Lett. Vol. 72 (1998), p.2535.

Google Scholar

[32] E. D. Specht, H. M. Christen, D. P. Norton and L. A. Boatner: Phys. Rev. Lett. Vol. 80 (1998), p.4317.

Google Scholar

[33] J. Sigman, D. P. Norton, H. M. Christen, P. H. Fleming and L. A. Boatner: Phys. Rev. Lett. Vol. 8 (2002), p.097601.

Google Scholar

[34] H. N. Lee, H. M. Christen, M. F. Chisholm, C. M. Rouleau, and D. H. Lowndes: Nature Vol. 433 (2005), p.395.

Google Scholar

[35] S. S. A. Seo, J. H. Lee, H. N. Lee, M. F. Chisholm, W. S. Choi, D. J. Kim, J. Y. Jo, H. Kim J. Yu and T. W. Noh: Adv. Mat. Vol. 19 (2007), p.2460.

DOI: 10.1002/adma.200601357

Google Scholar

[36] M. H. Corbett, R. M. Bowman, and J. M. Gregg and D. T. Foord: Appl. Phys. Lett. Vol. 79, (2001), p.815.

Google Scholar

[37] Y. L. Yu: Appl. Phys. Lett. Vol. 85 (2004), p.979.

Google Scholar

[38] Y. Lu and R. J. Knize: J. Phys. D: Appl. Phys. Vol. 37 (2004), p.2432.

Google Scholar

[39] H. Tabata, in: Ferroelectric Thin Films: Relaxor superlattices: Artificial control of the ordered-disordered state of B-site ions in perovskites, edited by M. Okuyama and Y. Ishibashi, volume 98 of Topics in Applied Physics, Part III, Springer-Verlag, Berlin (2005).

DOI: 10.1007/978-3-540-31479-0_9

Google Scholar

[40] R. Ranjith, R. Nikhil and S. B. Krupanidhi: Phys. Rev. B Vol. 74 (2006), p.184104.

Google Scholar

[41] N. Lemée, E. Dooryhée, H. Bouyanfif, F. Le Marrec, M. Nemoz, J. L. Hodeau and M. G. Karkut: Phys. Rev. B Vol. 78 (2008), p. 140102R.

Google Scholar

[42] R. Kretschmer and K. Binder: Phys. Rev. B Vol. 20 (1979), p.1065.

Google Scholar

[43] D.R. Tilley and B. Zeks: Solid State Commun. Vol. 49 (1984), p.823.

Google Scholar

[44] L. -H. Ong, J. Osman and D.R. Tilley: Phys. Rev. B Vol. 63 (2001), p.1141109.

Google Scholar

[45] Y. Ishibashi, H. Orihara and D.R. Tilley: J. Phys. Soc. Jpn. Vol. 67 (1998), p.3292.

Google Scholar

[46] K. -H. Chew, Y. Ishibashi, F. G. Shin and H. L. W. Chan: J. Phy. Soc. Jpn. Vol. 72 (2003), p.2972.

Google Scholar

[47] Y. Ishibashi, in: Ferroelectric Thin Films: Theoretical Aspects of Phase Transitions in Ferroelectric Thin Films, edited by M. Okuyama and Y. Ishibashi, volume 98 of Topics in Applied Physics, Part I, Springer-Verlag, Berlin (2005).

DOI: 10.1007/978-3-540-31479-0_1

Google Scholar

[48] Y. Ishibashi and M. Iwata: J. Phys. Soc. Jpn. Vol. 77 (2008), p.104707.

Google Scholar

[49] M. Iwata and Y. Ishibashi: J. Phys. Soc. Jpn. Vol. 79 (2010), p.074709.

Google Scholar

[50] Y. Ishibashi, M. Iwata and A. M. A. Musleh: J. Phys. Soc. Jpn. Vol. 76 (2007), p.104702.

Google Scholar

[51] M. Iwata and Y. Ishibashi: J. Phys. Soc. Jpn. Vol. 78 (2009), p.104707.

Google Scholar

[52] J.F. Scott, H.M. Duiker, P.D. Beale, B. Pouligny, K. Dimmler, M. Parris, D. Butler and S. Eaton: Physica B Vol. 150 (1988), p.160.

DOI: 10.1016/0378-4363(88)90118-0

Google Scholar

[53] E. -K. Tan, J. Osman and D.R. Tilley: Solid State Commun. Vol. 117 (2001), p.59.

Google Scholar

[54] J. Osman, D. R. Tilley, R. Teh, Y. Ishibashi, M. N. A. Halif and K. -H. Chew: Eur. Phys. J. B Vol. 52 (2006), p.143.

Google Scholar

[55] A. M. Alrub and L. -H. Ong: J. Appl. Phys. Vol. 109 (2011), p.084109.

Google Scholar

[56] D. Schwenk, F. Fishman and F. Schwabl: Ferroelectrics Vol. 104 (1990), p.349.

Google Scholar

[57] S. Li, J. A. Eastman, J. M. Vetrone, R. E. Newhnam and L. E. Cross: Philos. Mag. B Vol. 76 (1997), p.47.

Google Scholar

[58] B. D. Qu, W. L. Zhong and R. H. Prince: Phys. Rev. B Vol. 55 (1997), p.11218.

Google Scholar

[59] J. Shen and Y. -Q. Ma: Phys. Rev. B Vol. 61 (1999), p.14279.

Google Scholar

[60] Y. -Q. Ma, J. Shen and X. -H. Hu: Solid State Commn. Vol. 114 (2000), p.461.

Google Scholar

[61] J. Shen and Y. -Q. Ma: J. Appl. Phys. Vol. 90 (2001), p.5031.

Google Scholar

[62] P. G. Gennes: Solid State Commun. Vol. 1 (1963), p.132.

Google Scholar

[63] I. B. Misirlioglu, G. Akcay, S. Zhong and S. P. Alpay: Appl. Phys. Lett. Vol. 101 (2007), p.036107.

Google Scholar

[64] V. A. Stephanovich, I. A. Luk'yanchuk and M. G. Karkut: Phys. Rev. Lett. Vol. 94 (2005), p.047601.

Google Scholar

[65] A. P. Levanyuk and I. B. Misirlioglu: J. Appl. Phys. Vol. 110 (2011), p.114109.

Google Scholar

[66] Y. Zheng and C.H. Woo: Appl. Phys. A Vol. 97 (2009), p.617.

Google Scholar

[67] D. C. Ma, Y. Zheng and C.H. Woo: Acta. Mater. Vol. 57 (2009), p.4736.

Google Scholar

[68] L. -H. Ong, T. -Y. Lee and K. -H. Chew: Ceram. Int. Vol. 38S (2012), p. S3.

Google Scholar

[69] K. -H. Chew, L. -H. Ong and M. Iwata: Current Appl. Phys. Vol. 11 (2011), p.755.

Google Scholar

[70] L. Cui, T. Q. Lu, X. Xu, J. Zhou: J. Appl. Phys. Vol. 105 (2009), p.104104.

Google Scholar

[71] P. N. Sun, L. Cui and T. Q. Lu: Chin. Phys. B Vol. 18 (2009), p.1658.

Google Scholar

[72] Q. Zhang, L. Cui and T. Q. Lu: Physica B Vol. 406 (2011), p.2284.

Google Scholar

[73] T. Q. Lu and W. Cao: Phys. Rev. B Vol. 66 (2002), p.02410.

Google Scholar

[74] K. -H. Chew, L. -H. Ong, J. Osman and D. R. Tilley: Appl. Phys. Lett. Vol. 77 (2000), p.275.

Google Scholar

[75] L. -H. Ong and T. -Y. Lee: Ferroelectrics Vol. 401 (2010), p.251.

Google Scholar

[76] L. -H. Ong, J. Osman and D. R. Tilley: Phys. Rev. B Vol. 65 (2002), p.134108.

Google Scholar

[77] L. -H. Ong, J. Osman and D. R. Tilley: Ferroelectrics Vol. 355 (2007), p.130.

Google Scholar

[78] A. L. Roytburd, S. Zhong and S. P. Alpay: Appl. Phys. Lett. Vol. 87 (2005), p.092902.

Google Scholar

[79] A. Artemev, B. Geddes, J. Slutsker and A. Roytburd: J. Appl. Phys. Vol. 103 (2008), p.074104.

Google Scholar

[80] F. A. Urtiev, V. G. Kukhar and N. A. Pertsev: Appl. Phys. Lett. Vol. 90 (2007), p.252910.

DOI: 10.1063/1.2751134

Google Scholar

[81] S. Prokhorenko and N. A. Pertsev: J. Appl. Phys. Vol. 110 (2011), p.074116.

Google Scholar

[82] I. B. Misirlioglu: Appl. Phys. Lett. Vol. 94 (2009), p.172907.

Google Scholar

[83] S. Zhong, S. P. Alpay, A. L. Roytburd and J. V. Mantese: IEEE Trans. Ultrason. Ferroelectr. Freq. Control Vol. 53 (2006), p.2349.

DOI: 10.1109/tuffc.2006.183

Google Scholar

[84] I. B. Misirlioglu, M. Alexe, L. Pintilie and D. Hesse: Appl. Phys. Lett. Vol. 91 (2007), p.022911.

DOI: 10.1063/1.2757127

Google Scholar

[85] H. P. Wu, A. P. Liu, L. Z. Wu, and S. Y. Du: Appl. Phys. Lett. Vol. 93 (2008), p.242909.

Google Scholar

[86] M. B. Okatan, I. B. Misirlioglu and S. P. Alpay: Phys. Rev. B Vol. 82 (2010), p.094115.

Google Scholar

[87] N. A. Pertsev, P. E. Janolin, J. -M. Kiat and Y. Uesu: Phys. Rev. B Vol. 81 (2010), p.144118.

Google Scholar

[88] J. H. Qiu: Solid State Comm. Vol. 150 (2010), p.1052.

Google Scholar

[89] L. Yang and X. -P. Peng: Phys. Lett. A Vol. 375 (2011), p.4091.

Google Scholar

[90] J. H. Qiu and Q. Jiang: Solid State Comm. Vol. 149 (2009), p.1549.

Google Scholar

[91] B. Li, J. B. Wang, X. L. Zhong, F. Wang, B. L. Liu, X. J. Lou and Y. C. Zhou: Europhys. Lett. Vol. 95 (2011), p.67004.

Google Scholar

[92] N. A. Pertsev and M. Tyunina: J. Appl. Phys. Vol. 109 (2011), p.126101.

Google Scholar

[93] B. Yang, D. -M. Zhang, C. -D. Zheng, J. Wang and J. Yu: J. Phys. D: Appl. Phys. Vol. 40 (2007), p.5696.

Google Scholar

[94] C. -D. Zheng, D. -M. Zhang, X. -M. Liu, B. Yang, X. -J. Liu and J. Yu: Chin. Phys. Lett. Vol. 27 (2010), p.017702.

Google Scholar

[95] K. Abe, O. Furukawa and H. Inagawa: Ferroelectrics Vol. 87 (1988), p.55.

Google Scholar

[96] M. Iwata and Y. Ishibashi, in: Ferroelectric Thin Films: Analysis of ferroelectricity and enhanced piezoelectricity near morphotropic phase boundary, edited by M. Okuyama and Y. Ishibashi, volume 98 of Topics in Applied Physics, Part III, Springer-Verlag, Berlin (2005).

DOI: 10.1007/978-3-540-31479-0_7

Google Scholar

[97] T. Hosokura, N. Iwaji, T. Nakagawa, A. Ando, H. Takagi, Y. Sakabe and K. Hirao: Cryst. Growth Des. Vol. 11 (2011), p.4253.

DOI: 10.1021/cg200713c

Google Scholar

[98] T. Mizoguchi, H. Ohta, H. -S. Lee, N. Takahashi and Y. Ikuhara: Adv. Funct. Mater. Vol. 21 (2011), p.2258.

Google Scholar

[99] T. Ohnishi, H. Koinuma and M. Lippmaa: Appl. Surf. Sci. Vol. 252 (2006), p.2466.

Google Scholar

[100] D. D. Fong, C. Cionca, Y. Yacoby, G. B. Stephenson, J. A. Eastman, P. H. Fuoss, S. K. Streiffer, C. Thompson, R. Clarke, R. Pindak and E. A. Stern: Phys. Rev. B Vol. 71 (2005), p.144112.

DOI: 10.1103/physrevb.71.144112

Google Scholar

[101] J. Shin, A. Y. Borisevich, V. Meunier, J. Zhou, E. W. Plummer, S. V. Kalinin and A. P. Baddorf: ACS Nano Vol. 4 (2010), p.4190.

Google Scholar

[102] C. -L. Hung, Y. -L. Chueh, T. -B. Wu and L. -J. Chou: J. Appl. Phys. Vol. 97 (2005), p.034105.

Google Scholar

[103] Y. Ishibashi, N. Ohashi and T. Tsurumi: Jpn. J. Appl. Phys. Part 1 Vol. 39 (2000), p.186.

Google Scholar

[104] V. R. Cooper, K. Johnston and K. Rabe: Phy. Rev. B Vol. 71 (2005), p.144112.

Google Scholar

[105] H.M. Christen, E.D. Specht, D.P. Norton, M.F. Chisholm and L.A. Boatner: Appl. Phys. Lett. Vol. 72 (1998), p.2535.

Google Scholar

[106] E.D. Specht, H.M. Christen, D.P. Norton and L.A. Boatner: Phys. Rev. Lett. Vol. 80 (1998), p.4317.

Google Scholar

[107] J. Sigman, D. P. Norton, H. M. Christen, P. H. Fleming and L. A. Boatner: Phys. Rev. Lett. Vol. 8 (2002), p.097601.

Google Scholar

[108] P. Aguado-Puente, P. Garcia-Fernandez and J. Junquera: Phys. Rev. Lett. Vol. 107 (2011), p.217601.

Google Scholar

[109] H. Y. Hwang, Y. Iwasa, M. Kawasaki, N. Nagaosa and Y. Tokura: Nature Mater. Vol. 11 (2012), p.103.

Google Scholar

[110] H. Das, N. A. Spaldin, U. V. Waghmare and T. Saha-Dasgupta: Phys. Rev. B Vol. 81 (2010), p.235112.

Google Scholar

[111] A. Ohtoma and H. Y. Hwang: Nature Vol. 427 (2004), p.423.

Google Scholar

[112] N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A. -S. Ruetschi, D. Jaccard, M. Gabay, D. W. Muller, J. -M. Triscone and J. Mannhart: Science Vol. 317 (2007), p.1196.

DOI: 10.1126/science.1146006

Google Scholar

[113] A. Brinkman, M. Huijben, M. van Zalk, J. Huijben, U. Zeuitler, J. C. Maan, W. G. van der Wiel, G. Rijnders, D. H. A. Blank and H. Hilgenkamp: Nature Mater. Vol. 6 (2007), p.493.

DOI: 10.1038/nmat1931

Google Scholar

[114] Y. Watanabe, M. Okano, and A. Masuda: Phys. Rev. Lett. Vol. 86 (2001), p.332.

Google Scholar

[115] Y. Watanabe: Ferroelectrics Vol. 259 (2001), p.21.

Google Scholar

[116] Y. Watanabe, in: Ferroelectric Thin Films: Physics of Ferroelectric Interfaces: An Attempt at Nanoferroelectric Physics, edited by M. Okuyama and Y. Ishibashi, volume 98 of Topics in Applied Physics, Springer-Verlag, Berlin (2005).

DOI: 10.1007/978-3-540-31479-0_10

Google Scholar

[117] L. Qiao, T.C. Droubay, T.C. Kaspar, P.V. Sushko and S.A. Chambers: Surf. Sci. Vol. 605 (2011), p.1381.

Google Scholar

[118] M. K. Niranjan, Y. Wang, S. S. Jaswal and E. Y. Tymbal: Phys. Rev. Lett. Vol. 103 (2009), p.016804.

Google Scholar

[119] Z. Zhang, P. Wu, L. Chen and J. Wang: Appl. Phys. Lett. Vol. 99 (2011), p.062902.

Google Scholar

[120] M. E., Lines and A. M., Glass: Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford 1977).

Google Scholar

[121] D. D. Fong, G. B. Stephenson, S. K. Streiffer, J. A. Eastman, O. Auciello, P. H. Fuoss and C. Thompson: Science Vol. 304 (2004), p.1650.

DOI: 10.1126/science.1098252

Google Scholar

[122] K. -H. Chew, L. -H. Ong and M. Iwata, in: Ferroelectrics - Characterization and Modeling: Intrinsic Interface Coupling in Ferroelectric Heterostructures and Superlattices, edited by Mickaël Lallart, chapter 19, InTech, Croatia (2012).

DOI: 10.5772/16518

Google Scholar

[123] K. -H. Chew, Y. Ishibashi, F.G. Shin and H.L.W. Chan: J. Phys. Soc. Jpn. Vol. 72 (2003), p.2364.

Google Scholar

[124] C. H. Tsang, K. -H. Chew, Y. Ishibashi, and F.G. Shin: J. Phys. Soc. Jpn. Vol. 73 (2004), p.3158.

Google Scholar

[125] K. -H. Chew, Y. Ishibashi, and F.G. Shin: J. Phys. Soc. Jpn. Vol. 74 (2005), p.2338.

Google Scholar

[126] K. -H. Chew, Y. Ishibashi, and F.G. Shin: Phys. Stat. Sol. (a). Vol. 203 (2006), p.2205.

Google Scholar

[127] K. -H. Chew, Y. Ishibashi, and F.G. Shin: J. Phys. Soc. Jpn. Vol. 75 (2006), p.064712.

Google Scholar

[128] K. -H. Chew, Y. Ishibashi, and F.G. Shin: Ferroelectrics Vol. 357 (2007), p.133.

Google Scholar

[129] K. -H. Chew, M. Iwata, F. G. Shin and Y. Ishibashi: Integr. Ferroelectr. Vol. 100 (2008), p.79.

Google Scholar

[130] K. -H. Chew, M. Iwata and F. G. Shin: Ferroelectrics Lett. Sect. Vol. 36 (2009), p.12.

Google Scholar

[131] Y. Ishibashi and M. Iwata: Ferroelectrics Vol. 354 (2007), p.8.

Google Scholar

[132] K. -H. Chew, L. -H. Ong and M. Iwata: J. Appl. Phys. Vol. 110 (2011), p.054108.

Google Scholar

[133] Y. Ishibashi: Integr. Ferroelectr. Vol. 2 (1992), p.41.

Google Scholar

[134] Y. Ishibashi: J. Phys. Soc. Jpn. Vol. 59 (1990), p.4148.

Google Scholar

[135] M. Omura, H. Adachi and Y. Ishibashi: Jpn. J. Appl. Phys. Part 1 Vol. 30 (1991), p.2384.

Google Scholar

[136] M. Omura, H. Adachi and Y. Ishibashi: Jpn. J. Appl. Phys. Part 1 Vol. 31 (1992), p.3238.

Google Scholar

[137] M. Omura, T. Ishibahi and Y. Ishibashi: Jpn. J. Appl. Phys. Part 1 Vol. 32 (1993), p.4388.

Google Scholar

[138] D. Ricinschi, Y. Ishibashi, M. Iwata and M. Okuyama: Jpn. J. Appl. Phys. Part 1 Vol. 40 (2001), p.4990.

Google Scholar

[139] L. Baudry and J. Tournier: J. Appl. Phys. Vol. 90 (2001), p.1442.

Google Scholar

[140] D. Ricinschi, A. I. Lerescu and M. Okuyama: Jpn. J. Appl. Phys. Part 2-Lett. Vol. 39 (2000), p. L990.

Google Scholar

[141] M. Stengel and N. A. Spaldin: Nature Lett. Vol. 443 (2006), p.679.

Google Scholar

[142] M. Stengel, D. Vanderbilt and N. A. Spaldin: Nature Mat. Vol. 8 (2009), p.392.

Google Scholar

[143] L. -W. Chang, M. Alexe, J. F. Scott and J. M. Gregg: Adv. Mat. Vol. 21 (2009), p.4911.

Google Scholar

[144] C. -G. Duan, R. F. Sabrianov, W. -N. Mei, S. S. Jaswal and E. Y. Tsymbal: Nano Lett. Vol. 6 (2006), p.483.

Google Scholar

[145] Y. Wang, M. K. Niranjan, K. Janicka, J. P. Velev, M. Ye Zhuravlev, S. S. Jaswal and E. Y. Tsymbal: Phys. Rev. B Vol. 82 (2010), p.094114.

DOI: 10.1103/physrevb.82.094114

Google Scholar