Multiferroic Memory: A Disruptive Technology or Future Technology?

Article Preview

Abstract:

The term "Multiferroic" is coined for a material possessing at least two ferroic orders in the same or composite phase (ferromagnetic, ferroelectric, ferroelastic); if the first two ferroic orders are linearly coupled together it is known as a magnetoelectric (ME) multiferroic. Two kinds of ME multiferroic memory devices are under extensive research based on the philosophy of "switching of polarization by magnetic fields and magnetization by electric fields." Successful switching of ferroic orders will provide an extra degree of freedom to create more logic states. The "switching of polarization by magnetic fields" is useful for magnetic field sensors and for memory elements if, for example, polarization switching is via a very small magnetic field from a coil underneath an integrated circuit. The electric control of magnetization is suitable for nondestructive low-power, high-density magnetically read and electrically written memory elements. If the system possesses additional features, such as propagating magnon (spin wave) excitations at room temperature, additional functional applications may be possible. Magnon-based logic (magnonic) systems have been initiated by various scientists, and prototype devices show potential for future complementary metal oxide semiconductor (CMOS) technology. Discovery of high polarization, magnetization, piezoelectric, spin waves (magnon), magneto-electric, photovoltaic, exchange bias coupling, etc. make bismuth ferrite, BiFeO3, one of the widely investigated materials in this decade. Basic multiferroic features of well known room temperature single phase BiFeO3 in bulk and thin films have been discussed. Functional magnetoelectric (ME) properties of some lead-based solid solution perovskite multiferroics are presented and these systems also have a bright future. The prospects and the limitations of the ME-based random access memory (MERAM) are explained in the context of recent discoveries and state of the art research.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 189)

Pages:

1-14

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Moore: Fairchild Semiconductor internal publication (1964).

Google Scholar

[2] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig and R. Ramesh: Science Vol. 299 (2003), p.1719.

DOI: 10.1126/science.1080615

Google Scholar

[3] W. Eerenstein, N. D. Mathur, and J. F. Scott: Nature Vol. 442 (2006), p.759.

Google Scholar

[4] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima and Y. Tokura: Nature Vol. 426 (2003), p.55.

DOI: 10.1038/nature02018

Google Scholar

[5] M. Fiebig, Th. Lottermoser, D. Fröhlich, A. V. Goltsev and R. V. Pisarev: Nature Vol. 419 (2002), p.818.

DOI: 10.1038/nature01077

Google Scholar

[6] N. A. Spaldin, S. W. Cheong and R. Ramesh: Phys. Today Vol. 63 (2010), p.38.

Google Scholar

[7] J. F. Scott and C. A. Paz de Araujo: Science Vol. 246 (1989), p.1400.

Google Scholar

[8] D. A. Sanchez, N. Ortega, A. Kumar, R. Roque-Malherbe, R. Polanco, J. F. Scott and R. S. Katiyar: AIP Advances Vol. 1 (2011) p.042169.

DOI: 10.1063/1.3670361

Google Scholar

[9] A. Kumar, G. L. Sharma, R. S. Katiyar, J. F. Scott, R. Pirc and R. Blinc: J. Phys. Condens. Matter. Vol. 21 (2009), p.382204.

DOI: 10.1088/0953-8984/21/38/382204

Google Scholar

[10] A. Kumar, R.S. Katiyar and J. F. Scott: IEEE Trans. Ultrason., Ferroelectr., Freq. Control Vol. 57 (2010), p.2237.

Google Scholar

[11] S. Dussan, A. Kumar, S. Priya, J. F. Scott and R. S. Katiyar: Appl. Phys. Lett. Vol. 97 (2010), p.252902.

DOI: 10.1063/1.3528210

Google Scholar

[12] S. Dussan, A. Kumar, R. S. Katiyar, S. Priya and J. F. Scott: J. Phys.: Condens. Matter. Vol. 23 (2011), p.202203.

DOI: 10.1088/0953-8984/23/20/202203

Google Scholar

[13] Y. H. Chu, L.W. Martin, M. B. Holcomb and R. Ramesh: Mater. Today Vol. 10 (2007), p.16.

Google Scholar

[14] D. Khomskii: Physics Vol. 2, (2009), p.20.

Google Scholar

[15] D. V. Efremov, J. van den Brink and D. I. Khomskii: Nat. Mater. Vol. 3 (2004), p.853.

Google Scholar

[16] B. B. Van Aken, T. T. M. Palstra, A. Filippetti, and N. A. Spaldin: Nat. Mater. Vol. 3 (2004), p.164.

Google Scholar

[17] Y. Tokura and S. Seki: Adv. Mater. Vol. 22 (2010), p.1554.

Google Scholar

[18] P. Curie: J. de Physique, Vol. 3 (1894), p.393.

Google Scholar

[19] I. E. Dzyaloshinsky: J. Phys. Chem. Solids. Vol. 4 (1958), p.241.

Google Scholar

[20] T. Moriya: Phys. Rev. Vol. 120 (1960), p.91.

Google Scholar

[21] I. E. Dzyaloshinskii: J. Exp. Theor. Phys. Vol. 37 (1960), p.628.

Google Scholar

[22] D. N. Astrov: J. Exp. Theor. Phys. Vol. 13 (1961), p.729. [Zh. Eksp. Teor. Fiz. Vol. 40 (1961) p.1035. ].

Google Scholar

[23] A. Kumar, R. S. Katiyar and A. S. Bhalla: Ferroelectrics (under submission).

Google Scholar

[24] M. Fiebig: J. Phys. D: Appl. Phys. Vol. 38 (2005), p. R123.

Google Scholar

[25] T. H. O'Dell: Phil. Mag. Vol. 8 (1963), p.411.

Google Scholar

[26] F. Brown Jr, R. M. Hornreich and S. Shtrikman: Phys. Rev. Vol. 168 (1968), p.574.

Google Scholar

[27] I. Dzyaloshinskii: Europhys. Lett. Vol. 96 (2011), p.17001.

Google Scholar

[28] R. Pirc and R. Blinc: Phys. Rev. B. Vol. 76 (2007), p. 020101R.

Google Scholar

[29] A. Kumar, G. L. Sharma, R. S. Katiyar, R. Pirc, R. Blinc and J. F. Scott: J. Phys.: Condens. Matter. Vol. 21 (2009), p.382204.

DOI: 10.1088/0953-8984/21/38/382204

Google Scholar

[30] R. Pirc, R. Blinc and J. F. Scott: Phys. Rev. B. Vol. 79 (2009), p.214114.

Google Scholar

[31] A. Kumar, R. S. Katiyar and J. F. Scott: J. Appl. Phys. Vol. 108 (2010), p.064105.

Google Scholar

[32] R. Pirc and R. Blinc: Phys. Rev. B. Vol. 60 (1999), p.13470.

Google Scholar

[33] By definition, and ; thus M is in Am-1.

Google Scholar

[34] K. Uchino, S. Nomura,. L. E. Cross, S. J. Jang and R. E. Newnham: J. Appl. Phys. Vol. 51 (1980), p.1142.

Google Scholar

[35] J. Ma, J. Hu, Z. Li and C-W Nan: Adv. Mater. Vol. 23 (2011), p.1062.

Google Scholar

[36] J. Van Suchtelen: Philips Res. Rep. Vol. 27 (1972), p.28.

Google Scholar

[37] J. H. Kim, B. E. Park and H. Ishiwara: Jpn. J. Appl. Phys. Vol. 47 (2008), p.8472.

Google Scholar

[38] H. Ishiwara: Curr. Appl. Phys. Vol. 9 (2009), p S2.

Google Scholar

[39] A. Chung, J. Deen, J-S Lee and M. Meyyappan: Nanotechnology Vol. 21 (2010), p.412001.

Google Scholar

[40] A. Kumar, Ram S. Katiyar and J. F. Scott: Appl. Phys. Lett. Vol. 94 (2009) p.212903.

Google Scholar

[41] D. N. Astrov: J. Exp. Theor. Phys. Vol. 11 (1960), p.708. [ Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki. Vol. 38 (1960), p.984. ].

Google Scholar

[42] V. J. Folen, G. T. Rado and E.W. Stalder: Phys. Rev. Lett. Vol. 6 (1961), p.607.

Google Scholar

[43] R. Martinez, R. Palai, H. Huhtinen, J. Liu, J. F. Scott and R. S. Katiyar: Phys. Rev. B. Vol. 82 (2010), p.134104.

Google Scholar

[44] H. Y. Hwang, S-W. Cheong, N. P. Ong and B. Batlogg: Phys. Rev. Lett. Vol. 77 (1996). p. (2041).

Google Scholar

[45] W. Reohr,  H. Honigschmid,  R.  Robertazzi, D. Gogl,  F. Pesavento,  S. Lammers,.  K. Lewis, C. Arndt,  Y. Lu,  H. Viehmann, R. Scheuerlein,  L-K Wang,  P. Trouilloud,  S. Parkin,  W. Gallagher and G. Muller: IEEE Circuits Devices Mag. Vol. 18 (2002).

DOI: 10.1109/mcd.2002.1035347

Google Scholar

[46] J. G. Zhu: Proc. IEEE Vol. 96 (2008), p.1786.

Google Scholar

[47] S. Kim, S. Lee and H. Shin: Jpn. J. Appl. Phys. Vol. 49 (2010), p. 04DM07.

Google Scholar

[48] X. Chen, A. Hochstrat, P. Borisov and W. Kleemann: Appl. Phys. Lett. Vol. 89, (2006) p.202508.

DOI: 10.1063/1.2388149

Google Scholar

[49] M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthélémy and A. Fert: Nat. Mater. Vol. 6 (2007), p.296.

DOI: 10.1038/nmat1860

Google Scholar

[50] V. Garcia, M. Bibes, L. Bocher, S. Valencia, F. Kronast, A. Crassous, X. Moya, S. Enouz-Vedrenne, A. Gloter, D. Imhoff, C. Deranlot, N. D. Mathur, S. Fusil, K. Bouzehouane and A. Barthélémy: Science Vol. 327 (2010), p.1106.

DOI: 10.1126/science.1184028

Google Scholar

[51] J. T. Heron, M. Trassin, K. Ashraf, M. Gajek, Q. He, S. Y. Yang, D. E. Nikonov, Y-H. Chu, S. Salahuddin and R. Ramesh: Phys. Rev. Lett. Vol. 107 (2011), p.217202.

DOI: 10.1103/physrevlett.107.217202

Google Scholar

[52] Y-H Chu, L. W. Martin, M. B. Holcomb, M. Gajek, S-J Han, Q. He, N. Balke, Ch-H Yang, D. Lee, W. Hu, Q Zhan, P-L Yang, A. Fraile-Rodríguez, A. Scholl, S X. Wang, and R. Ramesh: Nat. Mater. Vol. 7 (2008), p.478.

DOI: 10.1038/nmat2184

Google Scholar

[53] T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom and R. Ramesh: Nat. Mater. Vol. 5 (2006) p.823.

DOI: 10.1038/nmat1731

Google Scholar

[54] J. -M. Hu, Z. Li, L. -Q. Chen and C. -W. Nan: Nat. Commun. Vol. 1564 (2011) p.1.

Google Scholar

[55] M. Cazayous, Y. Gallais, A. Sacuto, R. de. Sousa, D. Lebeugle and D. Colson: Phys. Rev. Lett. Vol. 101 (2008) p.037601.

DOI: 10.1103/physrevlett.101.037601

Google Scholar

[56] M. K. Singh, Ram S. Katiyar and J. F. Scott: J. Phys. Condens. Mater. Vol. 20 (2008), p.252203.

Google Scholar

[57] A. Kumar, N. M. Murari and R. S. Katiyar: Appl. Phys. Lett. Vol. 92 (2008), p.152907.

Google Scholar

[58] A. Kumar, J. F. Scott and R. S. Katiyar: Appl. Phys. Lett. Vol. 99 (2011), p.062504.

Google Scholar

[59] M. P. Kostylev, A. A. Serga, T. Schneider, B. Leven and B. Hillebrands: Appl. Phys . Lett. Vol. 87 (2005), p.153501.

DOI: 10.1063/1.2089147

Google Scholar

[60] V. V. Kruglyak, S. O. Demokritov and D. Grundler: J. Phys. D: Appl. Phys. Vol. 43 (2010), p.264001.

Google Scholar

[61] A. Khitun, M. Bao and K. L. Wang: J. Phys. D: Appl. Phys. Vol. 43 (2010), p.264005.

Google Scholar