Numerical Analysis of Time Dependent Effects in Bulk Nanocrystalline Hard Magnets

Article Preview

Abstract:

The presented work concerns numerical analysis of t-dependent magnetization curves. We propose the approach consisting in application of the so-called simulated annealing algorithm (SA) supplemented with local maximum entropy condition. Efficiency of the SA procedure and its parameters was tested with the use of computer generated curves derived from known distributions of relaxation time τ. Based on the determined SA parameters the analysis of empirical M(t) dependences measured for (Fe80Nb6B14)1-xTbx (x=0.08, 0.16) bulk nanocrystalline alloys were also carried out. As it was shown the SA procedure allows determining distributions of relaxation time without preliminary assumption about its shape and number of components.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 194)

Pages:

62-66

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. E. McHenry, M. A. Willard, D. E. Laughlin, Prog. in Mat. Sci. 44 (1999) 291.

Google Scholar

[2] A. Inoue, Mater. Sci. and Eng. A 226-228 (1997) 357-363.

Google Scholar

[3] H. Chiriac, N. Lupu, Journal of Non-Crystalline Solids 250-252 (1999) 751-756.

DOI: 10.1016/s0022-3093(99)00173-8

Google Scholar

[4] A.Chrobak, G.Haneczok, G. Chełkowska, A. Kassiba, G. Ziółkowski, Phys. Stat. Sol.(a) 208, No. 11 (2011) 2692–2698.

DOI: 10.1002/pssa.201127016

Google Scholar

[5] A.Chrobak, M.Karolus, G.Haneczok, Solid State Phenomena 163 (2010) 233-238.

DOI: 10.4028/www.scientific.net/ssp.163.233

Google Scholar

[6] G.Ziółkowski, N.Randrianantoandro, A.Chrobak, J.Klimontko, M.Kądziołka-Gaweł, G.Haneczok, Acta Physica Polonica A, Vol. 121, No. 5-6, (2012) 1266-1269.

DOI: 10.12693/aphyspola.121.1266

Google Scholar

[7] A. Lazinica, Particle Swarm Optymization, In-Tech, Croatia, 2009, DOI: 10.5772/109 (http://www.intechopen.com/books/particle_swarm_optimization).

Google Scholar