Evolution of the Magnetic and Electrical Properties in the Ce-Co-Ge System

Abstract:

Article Preview

Among the 10 phases reported to exist at 973 K in the Ce-Co-Ge ternary system, a strong dependence of the magnetic and transport properties on the constituent concentration has been evidenced. Close to the Ce-Ge binary axis, the ternary phases exhibit ferromagnetic-like ordering with low TC, while increasing the cobalt concentration leads first to a paramagnetic area, then to an antiferromagnetic one and finally to ferromagnetism with high TC for cobalt and Co-rich binaries. Similarly, electrical resistivity and thermopower measurements evidence a rather metallic behavior for cerium poor phases while an increase in the Ce-content results in an increase of the Kondo-like interactions.

Info:

Periodical:

Solid State Phenomena (Volume 194)

Edited by:

Yuriy Verbovytskyy and António Pereira Gonçalves

Pages:

80-83

Citation:

M. Pasturel et al., "Evolution of the Magnetic and Electrical Properties in the Ce-Co-Ge System", Solid State Phenomena, Vol. 194, pp. 80-83, 2013

Online since:

November 2012

Export:

Price:

$38.00

[1] R. Settai et al., J. Magn. Magn. Mater., 310 (2007) 844-846.

[2] S. K. Dhar et al., J. Magn. Magn. Mater., 270 (2004) 43-50.

[3] B. Chevalier te al., Solid State Commun., 130 (2004) 711-715.

[4] A. V. Andreev et al., Physica B, 403 (2008) 744-745.

[5] V. K. Pecharsky et al., Phys. Rev. B, 43 (1991) 8238-8244.

[6] E. D. Mun et al., Phys. Rev. B, 69 (2004) 085113.

[7] S. Layek et al., J. Magn. Magn. Mater., 321 (2009) 3447-3452.

[8] W. M. McCall et al., J. Appl. Phys., 44 (1973) 4724-4726.

[9] E. I. Gladyshevskii et al., Dopov. Akad. Nauk. Ukr. RSR, (1965) 601-604.

[10] B. Belan et al., Chem. Met. Alloys, 1 (2008) 43-45.

[11] O. L. Sologub et al., J. Alloys Compd., 307 (2000) 31-39.

[12] A. Soudé et al., J. Alloys Compd., 488 (2009) 123-128.

[13] C. Gold et al., J. Phys.: Conf. Ser., 200 (2010) 012049.

[14] M. Pasturel et al., to be submitted.

[15] M. El-Hagary et al. , J. Alloys Compd., 367 (2004) 239-245.

[16] M. El-Hagary et al., J. Phys.: Cond. Matter, 18 (2006) 4567-4580.

[17] A. Soudé et al., Intermetallics, 19 (2011) 1201-1206.

[18] A. P. Pikul, Intermetallics, submitted.

[19] V. K. Pecharsky et al., Phys. Rev. B, 47 (1993) 11839-11847.

[20] A. Thamizavel et al., J. Phys. Soc. Jpn., 74 (2005) 1858-1864.

[21] M. Kurisu et al., Physica B, 259-261 (1999) 96-98.

[22] A. V. Morozkin et al., J. Alloys Compd., 486 (2009) 497-500.

[23] S. K. Malik et al., Physica B, 404 (2009) 3063-3065.

[24] N. Marcano et al., J. Magn. Magn. Mater., 310 (2007) e35-e37.

[25] J. A. Zan et al., J. Appl. Phys., 93 (2003) 8340-8342.

[26] T. M. Seixas et al., Physica B, 269 (1999) 362-367.

[27] K. H. J. Buschow, J. Less-Common Met., 72 (1980) 257-263.

[28] L. Nordström et al., Phys. Rev. B, 41 (1990) 9111-9120.

[29] Z. Sun et al., J. Phys.: Cond. Matter, 12 (2000) 2495.

[30] A. Bekhti-Siad et al., J. Mol. Struct.: Theochem, 777 (2006) 11-16.

[31] K. Kanematsu et al., J. Phys. Soc. Jpn., 17 (1962) 932-936.

[32] H. Takizawa et al., J. Solid State Chem., 73 (1988) 40-46.

[33] L. Durivault et al., Acta Physica Polonica B, 34 (2003) 1393-1397.

[34] A. Perricone, Ph.D. Thesis, University of Rennes 1, France (2002).

[35] A. Soudé, Ph.D. Thesis, University of Rennes 1, France (2010).

[36] B. Cornut et al., Phys. Rev. B, 5 (1972) 4541-4561.