Commissioning and Control of the AMB Supported 3.5 kW Laboratory Gas Blower Prototype

Article Preview

Abstract:

This paper presents the practical results of the design analysis, commissioning, identification, sensor calibration, and tuning of an active magnetic bearing (AMB) control system for a laboratory gas blower. The presented step-by-step procedures, including modeling and disturbance analysis for different design choices, are necessary to reach the full potential of the prototype in research and industrial applications. The key results include estimation of radial and axial disturbance forces caused by the permanent magnet (PM) rotor and a discussion on differences between the unbalance forces resulting from the PM motor and the induction motor in the AMB rotor system.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 198)

Pages:

451-456

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Kejian, Z. Changsheng, T. Ming, A Uniform Control Method for Imbalance Compensation and Automation Balancing in Active Magnetic Bearing-Rotor Systems, Journal of Dynamic Systems, Measurements, and Control, 134 (2012), 13p.

DOI: 10.1115/1.4005279

Google Scholar

[2] R. J. Prins, M. E. F. Kasarda, & S. C. Bates Prins, A System Identification Technique Using Bias Current Perturbation for Determining the Effective Rotor Origin of Active Magnetic Bearings. Journal of Vibration and Acoustics, 129(3), (2007).

DOI: 10.1115/1.2424976

Google Scholar

[3] R. P. Jastrzebski, K. Hynynen, A. Smirnov, and O. Pyrhönen, Influence of the drive and dc link generated disturbances on an AMB control system. Electrical Review, 88(1a), (2012), 247-252.

Google Scholar

[4] R.P. Jastrzebski, R. Pöllänen, O. Pyrhönen, A. Kärkkäinen, and J. Sopanen, Modeling and implementation of active magnetic bearing rotor system for FPGA-based control. ISMB10, (2006), CD proceedings.

Google Scholar

[5] K. Hynynen, Broadband Excitation in the System Identification of Active Magnetic Bearing Rotor Systems. Dissertation, Acta Universitatis Lappeenrantaensis 446, LUT, Finland, (2011).

Google Scholar

[6] R.P. Jastrzebski, Design and Implementation of FPGA-based LQ Control of Active Magnetic Bearings, Dissertation, Acta Universitatis Lappeenrantaensis 296, LUT, Finland, (2007).

Google Scholar

[7] K. G. McConnell, Vibration Testing: Theory and Practice, first ed., John Wiley and Sons Inc., New York, (1995).

Google Scholar

[8] T. Lindh, On the condition monitoring of induction machines. Dissertation, Acta Universitatis Lappeenrantaensis 174, LUT, Finland, (2003).

Google Scholar

[9] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, (2004).

Google Scholar

[10] J. Löfberg, YALMIP: A Toolbox for Modeling and Optimization in MATLAB. In Proceedings of the CACSD Conference, Taipei, Taiwan, (2004).

Google Scholar

[11] R.P. Jastrzebski., R. Pöllänen, Centralized optimal position control for active magnetic bearings: comparison with decentralized control. Electrical Engineering, 91(2), (2009), 101-114.

DOI: 10.1007/s00202-009-0121-2

Google Scholar